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ABSTRACT

In this dissertation we provide new numerical algorithms for use in conjunction with simula-
tion based design codes. These algorithms are designed and best suited to run on emerging
heterogenous computing architectures which contain a combination of traditional multi-
core processors and new programmable many-core graphics processing units (GPUs). We
have developed the following numerical algorithms (i) a new Multidirectional Search (MDS)
method for PDE constrained optimization that utilizes a Multigrid (MG) strategy to accel-
erate convergence, this algorithm is well suited for use on GPU clusters due to its parallel
nature and is more scalable than adjoint methods (ii) a new GPU accelerated point im-
plicit solver for the NASA FUN3D code (unstructured Navier-Stokes) that is written in the
Compute Unified Device Architecture (CUDA) language, and which employs a novel GPU
sharing model, (iii) novel GPU accelerated smoothers (developed using PGI Fortran with
accelerator compiler directives) used to accelerate the multigrid preconditioned conjugate
gradient method (MGPCG) on a single rectangular grid, and (iv) an improved pressure
projection solver for adaptive meshes that is based on the MGPCG method which requires
fewer grid point calculations and has potential for better scalability on hetergeneous clus-
ters. It is shown that a multigrid - multidirectional search (MGMDS) method can run up
to 5.5X faster than the MDS method when used on a one dimensional data assimilation
problem. It is also shown that the new GPU accelerated point implicit solver of FUN3D is
up to 5.5X times faster than the CPU version and that the solver can perform up to 40%
faster on a single GPU being shared by four CPU cores. It is found that GPU accelerated
smoothers for the MGPCG method on uniform grids can run over 2X faster than the non-
accelerated versions for 2D problems, and that the new MGPCG pressure projection solver
for adaptive grids is up to 4X faster than the previous MG algorithm.

xvi



CHAPTER 1

INTRODUCTION

Traditional high performance computers containing advanced multi-core processors are in-
creasingly being mated with add on specialty hardware such as cell processors, field pro-
grammable gate arrays (FPGAs), and graphics processing units (GPUs), creating new
breeds of heterogenous computer architectures [23]. The emergence of these heterogeneous
many-core computing platforms has allowed for the creation of a new wave of software that
exploits an additional level of fine grain parallelism not available to traditional high perfor-
mance computers. When properly programmed, these systems have given way to drastic
reductions in computation time for problems across the spectrum of science and engineer-
ing. In this work we develop algorithms designed to exploit the unprecedented levels of
mass parallelism [23] these hybrid architectures can provide on the path towards exascale
computing. The primary mathematical focus of this dissertation is the development of
novel simulation based design (SBD) algorithms that are scalable on heterogeneous plat-
forms. The following items have been developed: (i) a gradient free ‘black box’ optimizer for
PDE constrained optimization that is trivially parallelizable and more scalable than adjoint
methods which converge more rapidly. (ii) CFD solvers that exploit GPUs and MPI. (iii) a
new MGPCG algorithm for block structured adaptive grids that requires fewer grid point
calculations than the previous method and is intuitively more scalable on heterogeneous
computer architectures. In addition to heterogenous scalability, another underlying theme
found in this work is the use of multigriding strategies which are used to accelerate both a
gradient free optimizer and the pressure projection solver of an incompressible multiphase
flow solver. Multigrid methods together with block structured data storage enable more
efficient use of cache making them well suited for heterogeneous computers. Since this work
combines research from distinct areas, we will provide some motivation from each.

1.1 Motivation: Gradient Free Optimization

Numerical optimization is a broad field that can essentially be broken down into two
basic categories, derivative and derivative free. Derivative based methods draw directly
from calculus where the minimum (or maximum) of a function can be found simply by
finding the point where the derivative or gradient is zero. Numerical optimization methods
that are founded in locating this point by using approximations to the derivative can be
considered rather efficient even in the slowest converging case (steepest descent) when given
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the alternative. It is, however, sometimes the case that gradient information is not avail-
able, and less efficient alternative methods for numerically finding optimal points becomes
necessary. Gradient free methods draw upon various inspirations for locating an optima,
from simply checking many random points (Monte Carlo methods) to the physical process
of cooling (simulated annealing) to the biological process of evolution (genetic algorithms).
Gradient free methods have many redeeming qualities, most notably that they tend to be
highly robust and are trivially parallelizable in many cases. Unfortunately, gradient free
methods all seem to fall well short of their derivative based counterparts when considering
the convergence rate, and so we would consider methods which can significantly reduce the
solution time for these methods highly desirable.

1.2 Motivation: Towards Computation at the Exascale

High performance computing systems are undergoing a rapid shift towards the coupling
of add-on hardware, such as graphics processing units (GPUs), Cell processors and field pro-
grammable gate arrays (FPGAs), with traditional multicore CPU’s. Hybrid clusters possess
unprecedented price to performance ratios and high energy efficiency, having placed in the
top supercomputer rankings [1], and dominated the Green500 list [2]. We note that the
Chinese Tianhe-1A, a supercomputer employing Nvidia Fermi architecture GPUs, recently
surpassed the Cray based ‘Jaguar’ of Oak Ridge National Laboratory as the worlds fastest
computer [1]. GPU clusters are also being used for research in large scale hybrid computing
in the U.S., including the Lincoln Tesla cluster at the National Center for Supercomputing
Applications [49]. Plans to build many more of these machines in the very near future are
already underway, and while new codes can be developed with this in mind, an emerging
challenge in this modern heterogeneous computing landscape is updating old software to
make best use of newly available hardware.

An exascale roadmap [23] has been developed by leading computing researchers from
academia and industry to address the issues involved with the transition from petascale to
exascale computing. While this report discusses numerous issues including the computing
infrastrcture, power awareness and fail safe algorithms for many component systems, some
important highlights we would like to emphasize from [23] include

• Exascale systems are expected to have a huge number of nodes, with many-core par-
allelism existing within each node via accelerators such as GPUs, yielding a heteroge-
neous computing environment.

• Memory heirarchies will be complex, programming models will need to exploit data
locality.

• There is a large body of existing scalable applications that need to be migrated towards
exascale.

• Exascale computing provides new opportunities for multi-scale, multi-physics and
multi-disciplinary applications.
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• Algorithms will need to be architecturally aware - adapting to possible heterogeneous
environments that they find themselves in.

While it is in general true that a code will see maximum benefit if it is designed from
the ground up with available GPUs in mind, there are many widely used legacy codes
whose development has spanned multiple decades, and for which this is not an option. In
these scenarios, the use of accelerator models in which tasks with large amounts of data
parallelism are ported to GPU code may provide the best solution. While some GPU codes
can demonstrate multiple orders of magnitude speedup, additional constraints will likely
prevent existing high level computational fluid dynamics (CFD) codes from realizing these
gains, particularly when they have already been highly optimized for large scale parallel
computation, or when the underlying spatial discretization is unstructured. Additionally,
architectures with many CPU cores typically need to share GPU resources leading to further
limits on the increased performance of a code utilizing an entire cluster. In this work
we will examine the acceleration of two CFD codes. We will describe the acceleration
of NASA’s FUN3D code with a novel GPU distributed sharing model, and discuss the
current challenges that face production level unstructured CFD codes in accelerator based
computing environments. We will also cover the acceleration of a structured level set -
volume of fluid code which will be used with a gradient free optimization algorithm to carry
out CFD simulation based design.

1.3 The Bigger Picture: Advancing Simulation Based

Design in CFD

The key motivation in advancing simulation based design capabilities is to reduce the
time to discovery of new technology. Simulation based design in CFD combines an un-
derlying numerical optimization method with a CFD solver to produce an optimal design.
Assuming the CFD simulation is non-trivial, the key bottleneck in the process is always
the CFD solver, as it will dominate the computational requirements of the algorithm at
every iteration. The other key factor in the process is then the optimization method used
since it will determine the number of iterations required for convergence. Considering all
other computations negligible to those of the CFD solver, the computational time of the
algorithm will equal the CFD solve time multiplied by the number of calls to the solver
per iteration multiplied by the number of iterations required for convergence. With this in
mind, we find it desirable to develop state of the art techniques which can reduce the CFD
solve time and acclerate the convergance rate of the optimizer, leading to multiplied gains
in the speed of the overall SBD code.

1.4 Background and Literature Review

In this paper we present a study of some numerical algorithms suitable for parallel
architectures employing GPUs as add on hardware, with the ultimate goal of accelerating
both simulation times and the solution time of complex simulation based based design
problems. This process allows for a reduction in the time to discovery for various problems
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of importance in science and engineering. The two key areas of focus in the simulation
aspect presented in this dissertation are aerodynamic and incompressible multiphase flows.
One such simulation based design application that will directly benefit from this work is
the design of microfluidic structures.

1.4.1 Numerical Optimization and Simulation Based Design

Simulation based design for CFD applications is essentially an optimization problem
dependend on a flow solver. To give an adequate background on the topic, we will disccuss
the closely related field of shape optimization in the context of CFD applications. A general
shape optimization problem takes on a form similar to that of a typical constrained mini-
mization problem, however, in shape optimization the cost function will be directly related
to the effect of a state variable on the shape of the object undergoing optimization. For
example, in a fluid dynamics setting the state variables are given by the governing equa-
tions that describe the flow the object is subject to, e.g. Navier Stokes, Euler, etc., and
so the constraints are the flow equations themselves. In this work the PDE constraint will
be given by the linear advection equation and the nonlinear Burger’s equation for 1D data
assimilation problems, the Navier-Stokes equations for incompressible multiphase flow, or
the Navier-Stokes equations for compressible flow in complex geometries. We will use

min J(u, φ)

subject to N(u, φ)

as the model problem, where J is the cost function, N is the set of governing equations,
u is the vector of state variables and φ is the design variable which may be a shape (or
discretely a set of parameters which make up the shape), or an initial condition as in data
assimilation problems. As we will use model problems from the field of data assimilation for
developing our numerical optimization strategies, it is also important to discuss this subject
here as well. The field of data assimilation can be considered very broad, encompassing all
attempts to where the fitting of data to models occurs. We will however narrow this scope
to more CFD based topics such as numerical weather prediction and ocean modelling, par-
ticularly areas that traditionally use adjoint based methods. A brief discussion is given here,
some good overviews of the topic can be found in [33, 66]. The two main ingredients for
data assimilation in this realm are observational data and a dynamic model, and so we can
view this as a PDE constrained optimization problem. To this end, our cost function will
represent a misfit between the observed data and the solution produced by the governing
equations, e.g. the fluid dynamic model. The cost function for a problem in this realm in
general can be viewed as

min J(u) = f(u − uobs).
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Cost functions in shape optimization can be very similar, leaving data assimilation prob-
lems with known solutions as good test problems for developing our optimization strategy.
In shape optimization we have a shape that we wish to optimize with respect to some
cost function and satisfying a set of constraints. For example, suppose we wanted to find
an airfoil that gives an optimal pressure distribution at low speeds, then the shape is the
airfoil, the cost function is some measure of the pressure distribution (usually in integral
form) and the governing Euler equations with appropriate boundary conditions provide the
constraints. Some cost function examples in the context of the optimization of a surface
ship hull as provided by Ragab in [64,65] include

J =

∫

BS
pnxdS (Wave Resistance)

J =

∫

FS
(η − ηd)

2dS (Target Wave Pattern)

J =
1

2

∫

BS
(p − pd)

2dS (Target Pressure Distribution)

where BS represents the body surface (ship) and FS represents the free surface (water sur-
face). P is pressure and η is the wave pattern, the d subscript represtents the target for each.

One technique used for optimization in both shape design and data assimilation is the
discrete adjoint method. Adjoint methods provide a better way for computing gradients
(for use in gradient based optimization methods) than direct computation when there are a
large number of design variables, since the computational expense is essentially independent
of the number of design variables. Popular in the field of optimal control theory, the use
of adjoint methods in aerodynamic shape optimization was first proposed by Jameson and
Pironneau who have since contributed numerous works to the field. Ragab has also used
continuous adjoints in the optimization of surface ship hulls [64,65], an area of application
for two phase incompressible flow. Though some research utilizing other methods such as
genetic algorithms [11, 36] and sequential quadratic programming [74] has been performed
along with the work of Ragab, we believe there is area for improvement. Another possible
application is the optimization of coastal structures and sea floors to minimize beach ero-
sion, as has been studied in [40] and [41] which claims that no other attempts have been
made to apply shape optimization techniques in this area. These works also utilize genetic
algorithms which can escape from local minima unlike the gradient based methods.

Aerodynamic shape optimization provides a great knowledge base for methods dedi-
cated to the optimization of shapes subject to fluid flow. There has been extensive research
done in many aspects of this field, from 2-D airfoils to complete 3-D aircraft configurations
subject to various flows. Some of the earleist numerical optimization for design in an aero-
dynamic setting was performed using finite difference computations of gradients for 2-D
wing profiles in transonic flows [39], from which studies of more complex configurations in
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sub and supersonic flows followed. Though there do exist some works still utilizing direct
finite difference computation of the gradient (see [35]), the vast majority have moved on
to more sophisticated methods. As mentioned earlier, the adjoint based work was pio-
neered by Jameson and Pironneau who have been joined by numerous others, working with
both discrete [12, 55, 57, 59, 60] and continuous [9, 44, 45] versions of the method. Adjoint
based data assimilation is popularly used in atmospheric and ocean modeling, where ob-
servational data is used to produce predictive simulations. Of interest here is work which
has been done involving free surface flows. The two papers by fang et al [24, 25] provide
some guidance to this aspect, particularly in the use of adaptive mesh methods with a free
surface. A paper that is important to note here is [56] where fluid control simulations are
carried out using a level set based discrete adjoint method. We initially found the method
contained here attractive for our optimization goals, but these simulations were produced
for smoke and we see that the fluid densities will be discontinuous across some multi-phase
fluid interfaces (such as liquid-gas) and so computing the derivative required for the adjoint
solution becomes problematic. Indeed, in the author’s discussion they note that for water
their projection and diffusion operations are discontinuous and the results prove to be less
accurate. For these reasons, we will seek derivative free methods which will allow us to
pursue optimization problems involving sharp interfaces without the need for concern over
the possible need for problematic gradient computations that may arise.

1.4.2 Accelerating CFD Codes on Hybrid Many-Core Architectures

There have been an excess of papers demonstrating the impressive performance gains
GPU computing can provide to applications across a wide range of science, engineering
and finance disciplines. For brevity, we will mention here just those most closely related
to accelerating the CFD codes we are interested in, namely a coupled level-set and volume
of fluid code (CLSVOF - structured, multiphase, incompressible Navier-Stokes) and the
NASA FUN3D code (unstructured, single phase, compressible/incompressible Euler and
Navier-Stokes). Some relevant works that have ported CFD codes to GPUs can be found
in [22] and [15] who achieved significant speedups up to 40X for the compressible Euler
equations, the latter on an unstructured grid. While both demonstrated significantly faster
GPU code times, we note that neither solved the full compressible Navier-Stokes equations,
and both used explicit Runge-Kutta solvers more suitable for acceleration than the implicit
algorithm in FUN3D. In addition, neither of these works considered scaling to multiple
processors, giving single-core, single-GPU results against individual CPUs. The report by
Jespersen [46] describes the porting of NASA’s OVERFLOW code to the GPU; but again
only for a single core setup and also in a structured grid environment with more favorable
memory access patterns. Jespersen [46] replaced the 64-bit implicit SSOR solver with a 32-
bit GPU Jacobi solver, resulting in a 2.5-3X speedup for the solver, and an overall code wall
clock time reduction of 40%, representing more realistic results for a high end CFD code.
The work by Cohen and Molemaker [13] is an excellent resource for anyone considering the
development or porting of CFD code for GPU computation, and includes double precision
considerations, an important aspect of CFD in general. We note that several incompressible
works using multi-GPU architectures have been reported [32, 43, 77], but none of these
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include a treatment of adaptive grids. Reviewing the literature one can see that, until
recently, the vast majority of the research in this field has focused solely on utilizing a
single CPU core with one or more GPUs as the primary source of computational power.
Conversely, only a minor amount of research has considered larger scale computations on
many cores with supporting GPUs, or even sharing a GPU among several CPU cores.
The latter is due to the fact that until the recent release of Nvidia’s latest architecture
’Fermi’ cards, concurrent kernel execution was not possible, and hence cores had to wait
serially for access to a shared GPU. Gödekke and Strzodka [28–31], among others, have
made a substantial contribution to large scale computing on graphics clusters over the last
several years, with particular focus to the areas of multigrid and finite element methods.
We note some other recent works that have considered using CFD codes in a GPU cluster
environment including [63] where a 16 GPU cluster was used to achieve 88X speedup over a
single core on a block structured MBFLO solver, and [42] who achieved 130X speedup over
8 CPU cores for incompressible flow with 128 GPUs on the aforementioned Lincoln Tesla
cluster. At this time we know of no published works employing any type of GPU sharing
model other than our own [21].
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CHAPTER 2

PDE CONSTRAINED OPTIMIZATION

The primary contribution of this work is the advancement of current methods involved in the
complex optimization of problems governed by PDE systems. While reducing the compu-
tational cost of the flow solvers involved is vital to this end, the most important aspect here
is in the reduction of the number of iterations required for convergence of the optimization
method itself. The physical nature of the majority of the problems we are concerned with
necesitate the use of slow converging gradient free methods, and so techniques which can
greatly reduce the number of iterations required to reach an optimal design are desirable.
While we will primarily focus on derivative free optimization methods, it is important to
also discuss gradient based methods which are a better choice for problems where gradient
computation is feasible, such as in single phase aerodynamics where adjoint methods dom-
inate. In this chapter we will describe both the continuous and discrete adjoint methods
along with the derivative free multidirectional search (MDS) method. To demonstrate the
effectiveness of both the discrete adjoint method and MDS, we will develop model data
assimilation problems to test both and will also describe a multigriding strategy which we
have used to reduce the number of iterations required for convergence of the MDS algorithm
when applied to these problems.

2.1 Adjoint Methods

Both continuous and discrete adjoint methods have shared much popularity in simula-
tion based design. In [80] an extensive study of discrete and continous adjoint methods is
reported. Some findings there include that the continuous adjoint equations are not unique
and in fact they can vary due to choices in the derivation which could affect the optimization
procedure, that the continuous adjoint may destroy symmetry properties for optimality con-
ditions required in some optimization procedures, and that continuous adjoints may have
degraded convergence properties over the discrete method, or may not converge at all. They
also found that continuous adjoints can provide more flexibility and note that the solution
provided by the discrete version is no more accurate than the discretization used to solve the
state equation. The discrete adjoint will be used here due to the more systematic approach
that can be taken to problem solving, however, a brief description of the continuous method
is provided below.
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2.1.1 Continuous Adjoint Method

In the continuous adjoint method, a constrained optimization problem is transformed
into an unconstrained type by forming a Lagrangian, with the Lagrange multipliers posing
as the adjoint variables. The adjoint problem can be determined through either a varia-
tional formulation or by finding shape derivatives. In the variational formulation, one could
represent the Lagrangian, as done in [65], by a sum of integrals of the general form

L =
∑

i

∫

Gi(u, φ)

and compute the variation in the Lagrangian, L, subject to a variation in the state variable
u by

δL =
∑

i

∫

∂Gi

∂φ

∣

∣

∣

∣

u

δφ +
∑

i

∫

∂Gi

∂u

∣

∣

∣

∣

φ

δu.

The computation of δu is undesireable and so the Lagrange multipliers are defined in order
to eliminate the term, i.e. the adjoint problem is determined so that it satisfies

∑

i

∫

∂Gi

∂u

∣

∣

∣

∣

φ

δu = 0.

After solving the adjoint problem, the adjoint solutions are then used to compute the
gradient

dL

dφ
=
∑

i

∫

∂Gi

∂φ

∣

∣

∣

∣

u

which is used for the optimization. The procedure for finding shape derivatives is similar
but is not discussed here.

2.1.2 Discrete Adjoint Method

In the discrete adjoint method, we essentially solve a set of governing equations for-
ward and then solve the adjoint problem backwards in time in order to acquire the adjoint
variables. In the case of linear governing equations, only the final solution data from the
forward solve is required, however, in the case of nonlinear governing equations the solution
data must be stored at every time step which can become restrictive for large problems.
We believe that this cost is not enough to detract from a method which can be systemati-
cally computed due to a lack of need for problem by problem analysis as is required in the
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continuous case. The treatment of boundary conditions is also an issue with the continuous
method, and as [55] notes, it is much easier to obtain these conditions for the adjoint solver
in the discrete version. An interesting solution method for the discrete adjoint problem is
given in [82] where a Monte Carlo method is used to solve the adjoint problem forward in
time for an explicit discretization of a time dependent problem. This allows the adjoint
solution to be solved at the same time as the original problem without the need for storing
the solution values at each time step.

Consider the general minimization problem

min L(u, φ) = J(u, φ)

subject to N(u, φ) = 0

where J is the cost function, N is the governing equation, u is the state variable and φ is the
design variable. In order to use a gradient based method (like steepest descent) to perform
the minimization, one will need to compute

dL

dφ
=

∂J

∂u

du

dφ
+

∂J

∂φ
. (2.1)

The du
dφ term can be determined by looking at the derivative of the governing equation.

dN

dφ
=

∂N

∂u

du

dφ
+

∂N

∂φ
= 0

which implies

∂N

∂u

du

dφ
= −

∂N

∂φ

du

dφ
=

(

∂N

∂u

)−1(

−
∂N

∂φ

)

. (2.2)

So from 2.1 and 2.2 we have
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dL

dφ
=

∂J

∂φ
−

∂J

∂u

(

∂N

∂u

)−1(∂N

∂φ

)

.

Now, we will instead solve the adjoint problem by finding λ where

λ =

[

∂J

∂u

(

∂N

∂u

)−1
]T

and the problem of finding the gradient breaks down to

Solve

(

∂N

∂u

)T

λ =

(

∂J

∂u

)T

(2.3)

Compute
dL

dφ
=

∂J

∂φ
− λT ∂N

∂φ
(2.4)

This abstract formulation can make the actual implementation seem like a bit of a mystery,
so to clarify things two examples are now given.

2.1.3 Linear Example Problem

Suppose we wish to solve the one dimensional advection equation on x ∈ [-1,1] where
we do not know the initial condition, but do know the solution data at time T . We can
recover the initial condition by treating this as a minimization problem.

min J(u, φ) =

∫ 1

−1
(u(x, T ) − ud(x, T ))2dx

subject to N(u, φ) = ut + aux = 0

u(x, 0) = g(x)

u(−1, t) = c

In this case, the design variable φ is the initial condition u(x, 0), ud is the observed solution
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data and c is a constant. We will assume a is positive and use a simple forward in time,
backward in space discretization of the governing equation

Nk
i =

uk
i − uk−1

i

∆t
+ a

(

uk−1
i − uk−1

i−1

∆x

)

= 0 (2.5)

and approximate J at the final time step m by

J = ∆x

n
∑

i=0

(um
i − udi)

2 .

Now, in terms of the discretization we have

N = [N0
−1, N

0
0 , ...N0

n, N1
−1, ...N

m
n ]T

u = [u0
−1, u

0
0, ...u

0
n, u1

−1, ...u
m
n ]T

λ = [λ0
−1, λ

0
0, ...λ

0
n, λ1

−1, ...λ
m
n ]T

G = [G0
−1, G

0
0, ...G

0
n, G1

−1, ...G
m
n ]

where the −1 subscript represnts the left ‘ghost’ boundary point needed, and G represents
∂J
∂u . To solve equation 2.3 we find

∂N

∂u
=



















∂N0
−1

∂u0
−1

∂N0
−1

∂u0
0

·· · · ·
∂N0

−1

∂um
n

∂N0
0

∂u0
−1

∂N0
0

∂u0
0

·

· · ·
· · ·

∂Nm
n

∂u0
−1

· · · ∂Nm
n

∂um
n



















and using the initial condition N0
i = u0

i along with the embedded boundary condition of

Nk
−1 = uk

−1 − c = 0
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this becomes

∂N

∂u
=

















I 0 0 · · 0
A11 A21 0 · · 0
0 A12 A22 ·
· · · ·
· · · 0
0 · A1m A2m

















where A1k and A2k are (n + 1) × (n + 1) block matrices (with superscripts denoting the
time level) given by

A1k =





















0 0 0 · · · 0
− a

∆x − 1
∆t + a

∆x 0 ·
0 − a

∆x − 1
∆t + a

∆x ·
· · ·
· · ·
· · ·
0 · · · − a

∆x − 1
∆t + a

∆x





















A2k =













1 · · · 0
0 1

∆t ·
· 1

∆t ·
· ·
0 · · · 1

∆t













.

For this problem, solving the adjoint turns out to require block solves of sparse structrured
matrices allowing simple direct solvers to be used.

Algorithm 1 Discrete Adjoint Solution, 1-D Linear Advection

A2λm = Gm

for i=m-1 to 1 do

A2λi = Gi − A1T λi+1

end for

λ0 = G0 − A1T λ1

Once the adjoint variable has been found, the gradient can be found as noted in the
previous section by computing 2.4, and the initial condition is updated according to the

13



minimization method used. It should be noted that this problem, like most inverse prob-
lems, is numerically ill-posed. As the effects of dissipation from the discretization become
too great (e.g. increasing the spatial step size), much different oscillating solutions are
allowed (and hence we have numerical ill-posedness) which can smooth out to match the
data at time t when advected forward. This problem can be remedied by the addition of
another term to the cost function, for example the term (∇u(x, 0))T (∇u(x, 0)) penalizes
the cost function when large jumps in the final solution (the recovered IC) are present, thus
eliminating the presence of oscillations. A term used by the data assimilation and optimal
control communities, known as the background or regularization term respectively, can be
given by (u(x, 0) − uB(x, 0))T (u(x, 0) − uB(x, 0)) where uB is the ‘background’, i.e. the
previous initial guess. Both of these terms can also benefit from a scaling parameter β.

2.1.4 Nonlinear Example Problem

For the nonlinear example we will solve essentially the same problem, but this time
subject to the classical Burgers equation, which possesses many of the features of more
complex fluid dynamics models.

min J(u, φ) =

∫ 1

−1
(u(x, t) − ud(x, t))2dx

subject to N(u, φ) = ut + uux − µuxx = 0

u(x, 0) = g(x)

u(−1, t) = c

ux(1, t) = 0

Here, we will use a Lax-Freidrichs discretization for Nk
i

uk
i − 1

2(uk−1
i+1 + uk−1

i−1 )

∆t
+

(uk−1
i+1 )2 − (uk−1

i−1 )2

4∆x
− µ

(

uk−1
i+1 − 2uk−1

i + uk−1
i−1

∆x2

)

= 0 (2.6)

The boundary conditions are discretized as

Nk
−1 = uk

−1 − c = 0

Nk
n+1 =

uk
n+1 − uk

n

∆x
= 0

14



For this example, the observational data is produced by solving the problem forward
using the above discretization along with c = 0.5 and g(x) = 0.5 + 0.5e−10·x2

and so there
is no observational error present, i.e. observational data is exact since it is generated from
the same discretization used in our model with the known solution (the IC g(x)) we are
testing against. For the solution of the inverse problem, poor initial data is chosen so as to
demonstrate the ability of the discrete adjoint method, and so we take g(x) = 0.5.

2.1.5 A Matrix Free Representation of the Discrete Adjoint Problem

From the previous example, one could imagine that as the number of dimensions increase
and the governing equations (along with their discretizations) become more sophisticated,
the resulting derivative matrix becomes very large, and (despite its sparseness) storage be-
comes very undesireable. In the case of realistic computational fluid dynamics problems,
the use of traditional sparse solvers may even be out of the question. A few methods have
been proposed to combat this issue, for example [82] uses a Monte Carlo method to compute
the adjoint, as previously mentioned, without storing the Jacobian or the previous solution
states, but here we will look to take advantage of the inherent structure of the Jacobian.
For this reason, we want to seek a matrix free representation that will allow us to compute
the gradient. It can easily be seen that the matrix ∂N

∂u will always take on a desireable block
lower triangular shape, and in fact it can always (at worst) take the form

∂N

∂u
=

















I 0 0 · · 0
J1

0 J1
1 0 · · 0

J2
0 J2

1 J2
2 ·

· · · ·
· · · 0

Jm
0 · · Jm

m−1 Jm
m

















Where Jk
i = ∂Nk

∂ui . It is important to note that this notation extends to all dimensions,
to be specific, in 1-D

Jk
i =



























∂Nk
−1

∂ui
−1

∂Nk
−1

∂ui
0

·· · · · ·
∂Nk

−1

∂ui
n

∂Nk
0

∂ui
−1

∂Nk
0

∂ui
0

·

· · ·

·
∂Nk

j

∂ui
j

· · ·
∂Nk

n

∂ui
−1

· · · · ∂Nk
n

∂ui
n



























Then in 2-D, each entry of the sub-Jacobian would become a sub-sub-Jacobian matrix
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∂Nk
j

∂ui
j

=





























∂Nk
j,−1

∂ui
j,−1

∂Nk
j,−1

∂ui
j,0

·· · · · ·
∂Nk

j,−1

∂ui
j,n

∂Nk
j,0

∂ui
j,−1

∂Nk
j,0

∂ui
j,0

·

· · ·

·
∂Nk

j,p

∂ui
j,p

· · ·
∂Nk

j,n

∂ui
j,−1

· · · ·
∂Nk

j,n

∂ui
j,n





























and so on. A useful consequence of this setup is that J i
i can always be made to be at least

diagonal ‘almost everywhere’, if not the identity matrix. This is dependent on the choice
of boundary conditions, with any non diagonal elements occuring in either the first or last
row. It is also likely that this will be a banded lower triangular block matrix rather than a
full lower triangular matrix depending on the time discretization, and the number of time
steps. For example, the problem in the previous section resulted in a single lower band
while the same problem utilizing a leap frog scheme would have two lower bands. Now, in
order to solve 2.3 for λk we have a true back solve since the diagonal blocks are themselves
diagonal matrices. So here, the solve looks just like a more generalized version of that found
in the example problem.

Algorithm 2 Discrete Adjoint Solution, General Explicit Method

Jm
m λm = Gm

for i=m-1 to 1 do

J i
iλ

i = Gi −
∑m

k=i+1 Jk
i

T
λk

end for

λ0 = G0 −
∑m

k=1 Jk
0

T
λk

At this stage, the setup seems (and is) rather nice for simple problems, as the user can
determine the individual sub-Jacobian matrices needed to solve the problem. This can,
however, quickly become much more complicated once the governing equations and their
associated discretizations become more complex, e.g. higher dimensions, systems of equa-
tions, higher order methods, etc. So now, we would like to find an easier way to compute
the sub-Jacobians. For this we will define the entries of Jk

i in terms of the approximate
Fréchet derivative so that

Jk
i ej =

Nk(ui
j + ǫej) − Nk(ui

j − ǫej)

2ǫ

where ej is the jth column of the identity matrix. So for example in 1-D, the (j, p) entry
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of Jk
i is

∂Nk
j

∂ui
p

and we would have

∂Nk
j

∂ui
p

=
Nk

j (ui
p + ǫ) − Nk

j (ui
p − ǫ)

2ǫ

As an example, to compute Jk
i

T
for the discretization 2.5 we could use algorithm 3.

Algorithm 3 Sub-Jacobian Computation

for p=1 to n do

if i=k or i=k+1 then

set temp1(u) = u
set temp2(u) = u
temp1(ui

p) = ui
p + ǫ

temp2(ui
p) = ui

p − ǫ
for j=1 to n do

N1 =
temp1(uk+1

j )−temp1(uk
j )

∆t + a

(

temp1(uk
j )−temp1(uk

j−1
)

∆x

)

N2 =
temp2(uk+1

j )−temp2(uk
j )

∆t + a

(

temp2(uk
j )−temp2(uk

j−1
)

∆x

)

Jk
i

T
(p, j) =

∂Nk
j

∂ui
p

= N1−N2
2ǫ

end for

else

Jk
i

T
(p, j) =

∂Nk
j

∂ui
p

= 0

end if

end for

So we now have a way to compute the Jacobians required in Algorithm 2 that avoids the
error prone and tedious task of explicitly determining them. This allows for an automated
procedure capable of solving the adjoint problem for even the most difficult of discretization
methods. Note that for linear problems, this matrix could be computed once and stored if
desired, while for the nonlinear case one needs to utilize the solution data from the forward
solve of the governing equation, and so must be recomputed at every step. Note that un-
like automatic differentiation (AD), this method does not require any specific problem by
problem coding, and only relies on the solution data itself. Since AD will not be used here,
we will not describe it but will note that it is a popular method due to its high accuracy,
and good treatments of this can be found in [50], [37] and [19].

One should take note that in most methods, a vast majority of the Jk
i matrices will be

0. Indeed, as previously stated it is dependent upon the time discretization. In general, an
nth order explicit time discretization that utilizes data from only n previous time steps will
result in
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Jk
i = 0 if |i − k| > n.

We should also note that in the case of Dirichelet boundary conditions, J i
i = I and thus

will not need to be computed. Also note that in a parallel setting, since we only need the
matrix vector products Jλ in the computation, we do not need to store J, only the resul-
tant vector. So J can be computed, multiplied by λ and be immediately discarded, hence
reducing storage and communication costs.

The last bit of information needed is how to choose ǫ. In [61] a similar method is used
in the Jacobian-free Newton Krylov method, and they state the simplest choice for epsilon
as (in the translated context of this paper)

ǫ =
1

N

N
∑

c=1

βuc

Where N is the total number of grid points and β is a constant with value within a few
orders of magnitude of machine epsilon.

2.2 Parallel Derivative Free Methods

While adjoint methods work very well for optimization problems with many design
variables, the gradient computation can be problematic for certain classes of problems. In
certain multiphase/multiphysics problems, gradients may be difficult or even impossible to
compute, and hence derivative free methods must be utilized in there place. It is well known
that derivative free methods, in general, converge very slowly and require a large number of
function evaluations. In PDE constrained optimization, this factor can be very limiting if
the PDE solution is expensive to compute. For these reasons, we seek a method which can
compute the PDE solves in parallel, allowing us to exploit the rapidly increasing number
of processor cores available to a given architecture. Luckily, most derivative free methods
are parallel in nature and many are embarassingly parallel. We have experimented with
the use of Monte Carlo methods (MC) and genetic algorithms (GA) as global optimizers,
but to this point in our research we have primarily focused on the local Multidirectional
search method (MDS) [78]. Though originally intended for unconstrained optimization, we
find this method appealing because it is a descent method and was designed for parallel
computers. Descent type methods are desirable because they reduce the cost function at
every iteration and are guaranteed to converge in many cases. We note that since MDS is
a local method, it can become trapped in local extrema, unlike MC or GA.
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2.2.1 The Multidirectional Search Method

Partly inspired by the Nelder-Mead simplex method, the multidirectional search method
(MDS) [17,78,79] is a descent method whose search directions are guaranteed to be linearly
independent. This method is most appropriate in this setting because it is developed, and
ideally suited for parallel computation, something that cannot be said of adjoint methods.
A key benefit of MDS is that convergence is guaranteed for smooth cost functions [79] and
it is more robust than the Nelder-Mead simplex method [78]. A brief description of the
general method will now be described.

The multidirectional search method first requires a set of n+1 vertices {vi; i = 0 : n}
which form a nondegenerate n-simplex, this can be viewed as the n-dimensional analogue
of a triangle, which is in fact a 2-simplex (see figure 2.1). The first step is to compute
the value of the cost function for all n+1 vertices, f(v0

i ), and the vertices are then ordered
according to lowest cost, starting with the 0 subscript. The superscript gives the itera-
tion number. The n edges connecting the best vertex to the rest provide the set of search
directions, which are linearly independent. A reflection step is then taken, in which we
find v1

i = 2v0
0 − v0

i and then calculate f(v1
i ). If a new minimum value is found, then an

expansion step is taken to see if an even better point can be found. This is calculated as
v0
ei

= (1 − µ)v0
0 + µv1

i , and if f(v0
ei

) < f(v1
i ), then v1

i = v0
ei

. If, however, we do not obtain
a better point after the reflection step, then we instead perform a contraction in a similar
manner, vk+1

i = (1 + θ)vk
0 − θvk+1

i . The vertices are then reordered and we move on to the
next iteration and repeat the process. The algorithm as described in [79] is given in alg.
2.2.1.

1

2 3

2-Simplex

1

2

3

3-Simplex

4

Figure 2.1: 2-Simplex (Left): A two dimensional triangle made by connecting 3
vertices. 3-Simplex (Right): A 3 dimensional tetrahedron made of triangles by
connecting 4 vertices

A question arises here of how MDS may be applied to PDE constrained optimization.
In the context of the 1-D data assimilation problems of this chapter, suppose we have a
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Algorithm 4 The Multidirectional Search Algorithm of Torczon [79].

Given an initial simplex S0 with vertices {u0
0, u

0
1, ..., u

0
n}, µ ∈ (1,+∞) and θ ∈ (0, 1)

for i = 0 to n do

calculate f(uk
i )

end for

k = 0
// outer while loop
while stopping criterion is not satisfied do

// find a new best vertex
j = mini{f(uk

i ) : i = 0, ..., n}
swap uk

j and uk
0

repeat

Check stopping criterion
// rotation step
for i = 1 to n do

rk
i = uk

0 − (uk
i − uk

0)
calculate f(rk

i )
end for

ek
i = uk

0 − µ(uk
i − uk

0)
replaced = (min{f(rk

i ) : i = 1, ..., n} < f(uk
0))

if replaced then

// expansion step
for i = 1 to n do

ek
i = uk

0 − µ(uk
i − uk

0)
calculate f(ek

i )
end for

if min{f(ek
i ) : i = 1, ..., n} < min{f(rk

i ) : i = 1, ..., n} then

// accept expansion
uk

i = ek
i for i = 1, ..., n

else

// accept rotation
uk

i = rk
i for i = 1, ..., n

end if

else

// contraction step
for i = 1 to n do

ck
i = uk

0 + θ(uk
i − uk

0)
calculate f(ck

i )
end for

replaced = (min{f(ck
i ) : i = 1, ..., n} < f(uk

0))
// accept contraction
uk

i = ck
i for i = 1, ..., n

end if

until replaced
k = k + 1

end while

20



candidate solution for the recovered IC in vector form. In this scenario we can create a
simplex by augmenting the solution with a set of n linearly independent alternate solutions
in the form of a scaled identity matrix, and use a multidirectional search on this set in
order to find a single optimal solution. We note that simplex-type methods such as MDS
are not typically used for problems with a large number of degrees of freedom, or what
we would consider here to be design variables. For algorithm 2.2.1, each additional design
variable introduced into the problem requires an additional flow solve computation at each
cost function evaluation step. For this reason it is important to note here that we intend
to use MDS in a design code for problems with a small number of design variables, which
will be described later.

2.2.2 A Multigriding Strategy for the Multidirectional Search Method

While we find MDS to be a promising derivative free method with which to carry out
our simulation based design goals, we would also like to find ways in which to reduce
the number of iterations required to achieve convergence, as each iteration requires a flow
solve which can become very costly. One such way to accelerate convergence that has
been used on gradient based methods [52, 58] is to use a multigriding strategy. Multigrid
methods [10] are well known for accelerating the convergence rates of PDE systems on fine
grids when the PDE system’s qualitative solution features can be captured using coarse
level grids. Multigrid methods should also be effective on nonlinear problems [10] and have
a solid research base in CFD applications [20, 38]. Since our proposed MDS algorithm is
dependent on such PDE systems, and since success in reducing the number of iterations
to convergence for gradient based methods has been achieved by employing multigriding
strategies [52, 58], it seems logical to attempt to accelerate our MDS algorithm as well by
utilizing a multigriding strategy. In order to test this strategy, we have devolped two MG
algorithms for the MDS method (MGMDS) using the MG cycle strategies of figure 2.2. The
first uses a V-cycle strategy where one starts with a fine grid approximation to the solution,
this method is demonstrated by algorithm 5. As an alternative strategy, we have also used
an MGMDS algorithm which starts with a coarse grid approximation using what is refered
to as a full multigrid (FMG) cycle, which is described in algorithm 6. We note that while
algorithms 5 and 6 are both set up for multiple MG cycles, we currently have no coarse grid
correction mechanism and so should be restricted to a single cycle in practice.

2.3 Numerical Results and Discussion

Presented in this section are some numerical findings based on the solution of both a
linear and nonlinear test problem formulated using the discrete adjoint method and both
the traditional MDS method of Torczon [78] and the novel MGMDS method described in
algorithms 5 and 6. For the linear case, the 1-D advection problem is solved, while for
the nonlinear case, a similar 1-D problem is posed utilizing Burgers equation in place of
the advection equation. Comparisons for the two formulations of each problem are made.
We note that in the discrete adjoint case, the solutions utilizing the stored matrix and the
computed matrix free versions of the flow Jacobian are identical. We have also found that for
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V−Cycle FMG−Cycle

h h

2h

4h

2h

4h

Figure 2.2: Multigrid cycling schemes tested in this work include the V-Cycle and
the full multigrid cycle (FMG).

Algorithm 5 A Multigrid-Multidirectional Search Algorithm, V-Cycle Strategy

Given a fine level grid XN and an initial simplex SN of solutions on XN , {u0
0, u

0
1, ..., u

0
n},

choose an expansion factor µ ∈ (1,+∞) and a contraction factor θ ∈ (0, 1).
while cost > tol and cycles < maxcycles do

k = N
// begin v-cycle
repeat

Call MDS(Sk,Xk, µ, θ,maxiterates)
restrict S,X, → k=k-1

until k=0
Call MDS(S0,X0, µ, θ, bottomiterates)
repeat

Call MDS(Sk,Xk, µ, θ,maxiterates)
prolong S,X, → k=k+1

until k = N
// end v-cycle

end while

if cost > tol then

// MG cycles complete, begin final MDS iterations
Call MDS(SN ,XN , µ, θ, f inaliterates)

end if
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Algorithm 6 A Multigrid-Multidirectional Search Algorithm, FMG Strategy

Given a fine level grid XN and an initial simplex SN of solutions on XN , {u0
0, u

0
1, ..., u

0
n},

choose an expansion factor µ ∈ (1,+∞) and a contraction factor θ ∈ (0, 1).
while cost > tol and cycles < maxcycles do

Restrict X,S to the coarsest grid → k=0
Call MDS(S0,X0, µ, θ,maxiterates)
ℓ = 1
repeat

for i = 1 to ℓ do

prolong X,S → k=k+1
Call MDS(Sk,Xk, µ, θ,maxiterates)

end for

for i = ℓ to 1 do

restrict X,S → k=k-1
Call MDS(Sk,Xk, µ, θ,maxiterates)

end for

ℓ = ℓ + 1
until ℓ = N
for i = 1 to N do

prolong X,S → k=k+1
Call MDS(Sk,Xk, µ, θ,maxiterates)

end for

end while

if cost > tol then

Call MDS(SN ,XN , µ, θ, f inaliterates)
end if
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these test cases, the use of the penalty term (∇u)T (∇u) and the traditional background, or
regularization term in the cost function give essentially the same result, producing solution
errors that are consistently within the same order of magnitude.

2.3.1 Linear Advection Problem

For the linear advection example, we demonstrate a recovery of the initial conditions
in a 1-D data assimilation problem whose solution possesses a steep gradient, and starting
with a poor initial guess. The problem is

min J(u, φ) =

∫ 1

−1
(u(x, T ) − ud(x, T ))2dx + β(∇u(x, 0))T (∇u(x, 0))

subject to N(u, φ) = ut + aux = 0

The data, ud, is generated by advecting a step function IC forward using the same
discretization as for the problem solution. The discretization method is again the forward
Euler method, the exact IC we wish to recover is

g(x) =

{

1.0 −0.5 < x < 0
0.5 Otherwise

.

We start with an initial guess of g(x) = 0. The plots in figures 2.3 to 2.10 show the actual
data, and the solution u after convergence. The plots to the left are at time t=0, and show
the exact IC we wish to recover (solid line), and the IC recovered using the discrete adjoint
and MDS methods (dash dot line). The plots on the right are at time t=1.0, and show the
advected solutions from these starting IC’s. These plots all have a value of β = 1.0 for the
cost function.

2.3.2 Nonlinear Burgers Equation Problem

For the Burgers problem, we will again use a single set of final end time observations
and a poor initial guess of g(x) = 0.5, with the fixed parameters N=96, dt=0.005, beta
= 1.0. To demonstrate the effects of nonlinear features on the solution, we have solved
this problem for various end times. The first figure 2.11 shows that the IC is recovered to
within a pretty close range of the exact IC used, but only after a very short time. As time
progresses, however, one can see that the recovered initial condition becomes progressively
worse to the point of showing little resemblance to the correct solution as in figure 2.19.
To remedy this, additional time observations must be provided. Note that increasing the
number of observations in time directly leads to improved solution quality for nonlinear
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Figure 2.3: Adjoint solution for linear advection problem. Left: Recovered IC for
64 grid points (U) versus exact IC (data). Right: Comparison of the advected
solutions. β = 1.0, ∆x = 1

32 , ∆t = 0.01. Requires 200 iterations for convergence
and runs in 1.945 seconds on a single CPU core.
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Figure 2.4: MDS solution for linear advection problem. Left: Recovered IC for
64 grid points (U) versus exact IC (data). Right: Comparison of the advected
solutions. β = 1.0, ∆x = 1

32 , ∆t = 0.01. Requires 8470 iterations for convergence
and runs in 50.183 seconds on four CPU cores.
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Figure 2.5: Adjoint solution for linear advection problem. Left: Recovered IC for
128 grid points (U) versus exact IC (data). Right: Comparison of the advected
solutions. β = 1.0, ∆x = 1

64 , ∆t = 0.01. Requires 700 iterations for convergence
and runs in 15.660 seconds on a single CPU core.
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Figure 2.6: MDS solution for linear advection problem. Left: Recovered IC for
128 grid points (U) versus exact IC (data). Right: Comparison of the advected
solutions. β = 1.0, ∆x = 1

64 , ∆t = 0.01. Requires 25330 iterations for convergence
and runs in 553.261 seconds on four CPU cores.
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Figure 2.7: Adjoint solution for linear advection problem. Left: Recovered IC for
256 grid points (U) versus exact IC (data). Right: Comparison of the advected
solutions. β = 1.0, ∆x = 1

128 , ∆t = 0.01. Requires 5700 iterations for convergence
and runs in 476.535 seconds on a single CPU core.

x

U
,d

at
a

-1 -0.5 0 0.5 1

0.4

0.6

0.8

1

data
U

x

U
,d

at
a

-1 -0.5 0 0.5 1

0.4

0.6

0.8

1

data
U

Figure 2.8: MDS solution for linear advection problem. Left: Recovered IC for
256 grid points (U) versus exact IC (data). Right: Comparison of the advected
solutions. β = 1.0, ∆x = 1

128 , ∆t = 0.01. Requires 28060 iterations for convergence
and runs in 2394.518 seconds on four CPU cores.
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Figure 2.9: Adjoint solution for linear advection problem. Left: Recovered IC for
400 grid points (U) versus exact IC (data). Right: Comparison of the advected
solutions. β = 1.0, ∆x = 1

200 , ∆t = 0.01. Requires 200 iterations for convergence
and runs in 57.158 seconds on a single CPU core.
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Figure 2.10: MDS solution for linear advection problem. Left: Recovered IC for
400 grid points (U) versus exact IC (data). Right: Comparison of the advected
solutions. β = 1.0, ∆x = 1

200 , ∆t = 0.01. Requires 20690 iterations for convergence
and runs in 4694.7679 seconds on four CPU cores.
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problems. This is important, as it is known that increasing the number of observational
data points for a single time does not have a major impact [26], but here we see that in-
creasing the number of time observations indeed does.
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Figure 2.11: Adjoint solution for non-linear Burger’s equation problem. Left:
Recovered IC (U) versus exact IC (data), t=0.05. Right: Comparison of the final
solutions. β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001. Requires 200 iterations for
convergence and runs in 4.339 seconds on a single CPU core.

2.3.3 Multigrid-Multidirectional Search Strategies

Employing the multigriding strategies of algorithms 5 and 6 have proven effective at
substantially reducing the number of iterations required for convergence of both the linear
advection and the nonlinear Burger’s data assimilation problems in many scenarios. For the
linear advection problem, we have found that both the v-cycle and FMG cycles produce near
optimal results by using approximately 300 fixed iterations of the MDS solver at each level.
While we have seen good speedup by employing multigriding strategies, one can see from the
figures that the quality of the converged solution does suffer slightly, and we attribute this
to the lack of a correction step in our algorithm. One method we have employed to try and
smooth out these small errors that eminate from the use of a multigriding strategy is to use
a weighted average of the fine grid solutions. To accomplish this, we take a weighted average
of the solution everytime we arrive at a fine grid in the MG cycle, i.e. U = θU +(1− θ)Uold

for a θ ∈ (0, 1). This has shown to be useful in smoothing out the solution of the linear
advection problem when more than 1 FMG cycle is used as seen in figure 2.25, but at the
cost of added sppedup as seen in table 2.3.

29



x

U
,d

at
a

-1 -0.5 0 0.5 1

0.4

0.5

0.6

0.7

0.8

0.9

1

data
U

x

U
,d

at
a

-1 -0.5 0 0.5 1

0.4

0.5

0.6

0.7

0.8

0.9

1

data
U

Figure 2.12: MDS solution for non-linear Burger’s equation problem. Left: Re-
covered IC (U) versus exact IC (data), t=0.05. Right: Comparison of the final
solutions. β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001. Requires 720 iterations for
convergence and runs in 2.763 seconds on four CPU cores.
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Figure 2.13: Adjoint solution for non-linear Burger’s equation problem. Left:
Recovered IC (U) versus exact IC (data), t=0.15. Right: Comparison of the final
solutions. β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001. Requires 200 iterations for
convergence and runs in 27.599 seconds on a single CPU core.
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Figure 2.14: MDS solution for non-linear Burger’s equation problem. Left: Re-
covered IC (U) versus exact IC (data), t=0.15. Right: Comparison of the final
solutions. β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001. Requires 1470 iterations for
convergence and runs in 10.354 seconds on four CPU cores.
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Figure 2.15: Adjoint solution for non-linear Burger’s equation problem. Left:
Recovered IC (U) versus exact IC (data), t=0.25. Right: Comparison of the final
solutions. β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001. Requires 200 iterations for
convergence and runs in 71.018 seconds on a single CPU core.
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Figure 2.16: MDS solution for non-linear Burger’s equation problem. Left: Re-
covered IC (U) versus exact IC (data), t=0.25. Right: Comparison of the final
solutions. β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001. Requires 3220 iterations for
convergence and runs in 30.021 seconds on four CPU cores.
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Figure 2.17: Adjoint solution for non-linear Burger’s equation problem. Left:
Recovered IC (U) versus exact IC (data), t=0.35. Right: Comparison of the final
solutions. β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001. Requires 200 iterations for
convergence and runs in 134.777 seconds on a single CPU core.
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Figure 2.18: MDS solution for non-linear Burger’s equation problem. Left: Re-
covered IC (U) versus exact IC (data), t=0.35. Right: Comparison of the final
solutions. β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001. Requires 10690 iterations for
convergence and runs in 120.272 seconds on four CPU cores.
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Figure 2.19: Adjoint solution for non-linear Burger’s equation problem. Left:
Recovered IC (U) versus exact IC (data), t=0.5. Right: Comparison of the final
solutions. β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001. Requires 300 iterations for
convergence and runs in 404.615 seconds on a single CPU core.
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Figure 2.20: MDS solution for non-linear Burger’s equation problem. Left: Re-
covered IC (U) versus exact IC (data), t=0.5. Right: Comparison of the final
solutions. β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001. Requires 45620 iterations for
convergence and runs in 704.615 seconds on four CPU cores.

Table 2.1: V-cycle multigriding strategy applied to the multidirectional search
method on the 1D linear advection data assimiliation problem for N=400 grid
points. V-cycles utilize 300 iterations at each grid level, and the final number of
MDS iterations required for the solver to converge are also listed. Time represents
user time on four processor cores. Baseline time for the original MDS algorithm
is 17977 seconds.

V-Cycles (maxcycles) Final MDS Iterations (finaliterates) Time (s) Speedup

1 24740 21968 0.82X
2 10350 10586 1.70X
3 8360 9554 1.88X
4 10100 11691 1.54X
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Table 2.2: FMG multigriding strategy applied to the multidirectional search
method on the 1D linear advection data assimiliation problem for N=400 grid
points. The FMG cycle utilizes between 200 and 400 iterations at each grid level,
the final number of MDS iterations required for the solver to converge are also
listed. Time represents user time on four processor cores. Baseline time for the
original MDS algorithm is 17977 seconds.

maxiterates Final MDS Iterations (finaliterates) Time (s) Speedup

200 9280 8911 2.02X
250 7040 7179 2.50X
300 2260 3279 5.48X
350 5780 6381 2.82X
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Figure 2.21: MGMDS solution for linear advection problem using an FMG cycle
with 200 iterations at each level. Left: Recovered IC for 400 grid points (U) versus
exact IC (data). Right: Comparison of the advected solutions. β = 1.0, ∆x = 1

200 ,
∆t = 0.01.
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Figure 2.22: MGMDS solution for linear advection problem using an FMG cycle
with 300 iterations at each level. Left: Recovered IC for 400 grid points (U) versus
exact IC (data). Right: Comparison of the advected solutions. β = 1.0, ∆x = 1

200 ,
∆t = 0.01.
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Figure 2.23: MGMDS solution for linear advection problem using 2 V-cycles with
300 iterations at each level. Left: Recovered IC for 400 grid points (U) versus
exact IC (data). Right: Comparison of the advected solutions. β = 1.0, ∆x = 1

200 ,
∆t = 0.01. Requires 2 V-cycles plus 10350 final MDS iterations for convergence
and runs in 2515.487 seconds on four CPU cores.
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Figure 2.24: MGMDS solution for nonlinear Burger’s problem using an FMG
cycle. Left: Recovered IC for 256 grid points (U) versus exact IC (data). Right:
Comparison of the advected solutions. β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001.

Table 2.3: FMG multigriding strategy applied to the multidirectional search
method on the 1D linear advection data assimiliation problem for N=400 grid
points, and employing a weighted averaging of the fine grid solutions, θ = 0.5.
The FMG cycle utilizes 300 iterations at each grid level, the final number of MDS
iterations required for the solver to converge are also listed. Time represents user
time on four processor cores. Baseline time for the original MDS algorithm is
17977 seconds.

FMG Cycles Final MDS Iterations Time (s) Speedup

1 4350 4863 3.70X
2 4460 5760 3.12X
3 5370 7308 2.46X
4 6630 9152 1.96X
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Figure 2.25: MGMDS IC recovery for a 1D linear advection data assimilation
problem using an FMG cycle employing a weighted averaging of the fine grid
solution. Using more than one FMG cycle results in a smoothing effect on the
solution data. Top Left: 1 FMG cycle. Top Right: 2 FMG cycles. Bottom Left:
3 FMG cycles. Bottom Right: 4 FMG cycles. β = 1.0, ∆x = 1

200 , ∆t = 0.01 for
all figures.
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2.3.4 Discussion of Numerical Results

We should note that the numerical experiments carried out here were under conditions
far from ideal. Usually, a good starting estimate along with more available data (i.e. data
collected at multiple time intervals) is used for the problem solution in data assimilation
problems, but here we have purposely used poor initial guesses along with limited data.
It can be seen that for linear problems, the adjoint method works very well and is able to
recover a difficult initial condition possessing steep gradients with ease using only a single
set of observed solutions, and that as the computational grid is resolved the error tends
towards zero. The MDS algorithm also works well for the linear advection problem, pro-
ducing qualitative solutions very similar to those of the adjoint method despite the large
number of design variables.

The adjoint method does not work as well on the nonlinear Burgers problem, as poor
initial guesses will produce poorer and poorer solutions as the solution is carried out further
and further in time. This is due to the nonlinear features, and in this scenario the use
of data for multiple times should be used to correct this problem. The figures provided
(2.26, 2.27, 2.28) demonstrate how increasing the number of observations leads to improved
solutions for nonlinear problems. We note that many observations are typically used in
data assimilation problems and that errors resulting from non-linear model features are well
known, though those produced by data assimilation tend to be lower than those produced
by other predictive modeling methods, see for example [6]. The MDS method works very
well on the nonlinear Burger’s problem even in the absence of additional observational data
as can be seen by figures 2.11 - 2.20.
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Figure 2.26: Adjoint nonlinear IC Recovery, 5 observations. Left: Recovered IC
(U) versus exact IC (data), t=0.5. Right: Comparison of the final solutions.
β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001.

We would like to compare how well the multidirectional search with and without a
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Figure 2.27: Adjoint nonlinear IC Recovery, 10 observations. Left: Recovered
IC (U) versus exact IC (data), t=0.5. Right: Comparison of the final solutions.
β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001.
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Figure 2.28: Adjoint nonlinear IC Recovery, 20 observations. Left: Recovered
IC (U) versus exact IC (data), t=0.5. Right: Comparison of the final solutions.
β = 1.0, ∆x = 1

48 , ∆t = 0.005, µ = 0.001.
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multigriding strategy compares to the adjoint method for the numerical examples given.
While it is very clear that the discrete adjoint method is substantially faster than MDS
in a sequential setting, we wish to show that in the presence of abundant processors the
MDS method can compete on par with the discrete adjoint method on a single core. For
this purpose we will compare the linear advection problem with N=400 grid points since
it produced the most accurate results for all methods involved here. For this problem, the
discrete adjoint code converged in 200 iterations and took 57.158 seconds to complete. In
contrast, it took the MDS method 20690 iterations to converge and 16970 seconds on a single
core. In parallel, the same MDS code ran in 4694 seconds, giving a parallel efficiency of
about 0.9 on a shared memory system. We note that the parallel efficiency was higher in all
other cases, and almost linear for the N=256 case, so we feel that 0.9 is a safe estimate to use
for this hypothetical exercise. The MDS method can be considered ‘embarassingly parallel’
on up to N+1 processors since this is how many parallel flow solves can be done at once. So,
if we were to theoretically have 401 processors on a shared memory system, then this code
would take approximately 47 seconds (=16970.342/(401*0.9)) to run (a little faster than the
adjoint code), and using this parallel efficiency we would require approximately 330 cores to
match the speed of the adjoint code. The MGMDS code is much more promising. Consider
using the FMG cycle with 300 iterations at each grid level, then the estimated parallel
efficiency is 0.94 and takes 3090 seconds on a single core. In this scenario we would only
need about 58 cores to match the speed of the adjoint method, and with 401 cores would
be 7X faster than the adjoint method. We note that our discrete adjoint code could also
benefit somewhat from parallelization, but the underlying algorithm is inherently sequential
and the parallel efficiency would likely be very low.
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CHAPTER 3

CFD CODE ACCELERATION

In this chapter we will discuss some approaches that have been taken in order to accelerate
two CFD codes, the NASA FUN3D code and the coupled level-set and volume-of-fluid
(CLSVOF) code for incompressible multiphase flows. While we have primarily focused
on the use of add on GPU hardware for accelerating CFD codes, we will also discuss
an improved pressure projection algorithm for adaptive mesh refinement (AMR) that we
have recently developed. This new algorithm based on Tatebe’s multigrid preconditioned
conjugate gradient method (MGPCG) [76] substantially reduces the computational effort
required by the projection step when compared to MG AMR solvers, and also improves the
scalability of the CLSVOF code by avoiding a ‘domain decomposition penalty’.

3.1 Graphics Processors and Hybrid Computing

Architectures

Modern graphics processors along with languages such as the breakthrough ’Compute
Unified Device Architecture’ (CUDA) [14] and OpenCL to program them has allowed for
scientific computations on distributed computers to benefit from an additional level of fine
grain parallelism at the node level. When attempting to develop an accelerated version of a
large parallel CFD code, several challenges present themselves. To start with, these codes
have already been highly optimized for parallel computation and so the biggest possible gains
may have already been accounted for. One must look beyond coarse grain parallelism (e.g.,
dividing a grid into blocks and distributing them over multiple CPU cores) and seek fine
grained data parallel tasks which can be ported to the GPU. If these opportunities exist for
a large scale code, it has the potential to benefit from an added level of parallelism. Parallel
codes also must employ frequent MPI communications, which when used in an accelerator
environment will implicitly invoke expensive GPU-CPU data transfers. Scalability is also
a big issue for all production level CFD codes. With the rising number of CPU cores per
processor coupled with the rising cost and power consumption of an individual GPU, it is
not likely that future large scale hybrid architectures will be able to maintain a 1:1 or better
ratio of GPUs to CPU cores. The new availability of concurrent kernel execution allows
multiple cores to share a single GPU. This feature should allow hybrid codes to scale on
systems with a GPU to CPU ratio below 1. This feature does come at a price though, as
increasing the number of CPU threads which simultaneously share a single GPU puts added
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demand on the available memory and could put additional strains on other resources for
large kernels. In addition to these challenges, the unstructured solver of FUN3D is hindered
by the unavoidable constraint of out-of-order memory access patterns, which can cause very
poor performance on a GPU. In this chapter we will describe the CLSVOF and FUN3D
codes, and detail the various strategies we have employed to accelerate them.

3.2 The Coupled Level-Set and Volume-of-Fluid Method

We will consider the following incompressible Navier-Stokes equations for multiphase
flow [73]:

ρ(φ)(~ut + ~u · ∇~u) = −∇p + ∇ · µ(φ)∇D − γκ(φ)∇H(φ) + ρ~g.

∇ · ~u = 0.

where ρ(φ) is the density, µ(φ) is the viscosity, ~u is the velocity, D is the rate of deformation
tensor, p is the pressure, κ(φ) is the curvature, ~g is the gravitational forces, and H(φ) is
the Heaviside function.

In the level set approach, the set of points,

Γ = {(x, y, z)|φ(x, y, z, t) = 0},

represents the air/water interface Γ at time t. For single-valued surfaces the points satisfying
z = ζ(x, y, t) represents the zero level set of φ(x, y, z, t). The advantage of using φ(x, y, z, t)
is that multi-valued surfaces are handled naturally. Also, the level set representation of an
interface does not break down if the interface changes topology: e.g. if an interface break-up
occurs or if surfaces reconnect. The equation governing the level set function is given by,

φt + ~u · ∇φ = 0.

In order to increase the accuracy for simulating multi-phase flows, we have developed
adaptive mesh refinement (AMR) level set methodology in order to dynamically place grid
points in the vicinity of the air/water interface [18,70–72].

The key component of this work considers the solution of the pressure projection equa-
tion,

∇ ·
1

ρ
∇p = ∇ · ~u∗, (3.1)

where ~u∗ is an intermediate velocity field resulting from a standard “projection method”
splitting scheme, and the density ρ is represented by both liquid and gas phases

ρ = ρLH(θ) + ρG(1 − H(θ)).

The discretization utilizes the level set function such that ρ is a function of φ and
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ρi+1/2,j(φ) = ρLθi+1/2,j + ρG(1 − θi+1/2,j)

where θi+1/2,j is a height fraction,

θi+1/2,j =
φ+

i,j + φ+
i,j+1

|φi,j| + |φi,j+1|

and φ+ = max(φ, 0). The spatial discretization of eqn. 3.1 utilizes cell centered values for p
with corresponding values at the cell faces for ρ such as in the example 1D discretization 3.3.
We note that the use of first order boundary conditions results in a symmetric discretization
matrix [53,54]. We will primarily be concerned with solving equation 3.1.

3.2.1 Solution of the Pressure Poisson Equation

The numerical simulation of incompressible fluid flows consisting of multiple phases with
large density variations (such as in liquid-gas scenarios) can present significant challenges,
particularly in the solution of the pressure projection step. The phase density ρ is repre-
sented in liquid and gas phases by ρ = ρLH(φ) + ρG(1−H(φ)), where H(φ) is a Heaviside
function equal to 1 in liquid and 0 in gas. The rate of convergence of the iterative solution
of the pressure Poisson equation

∇ ·
1

ρ
∇p = F (3.2)

is retarded if ρL

ρG
>> 1 because the resulting discretization matrix is very poorly conditioned.

Consider the 1D discretization of eqn. 3.2

1
ρ

i+1
2

pi+1−pi

∆x − 1
ρ

i− 1
2

pi−pi−1

∆x

∆x
= Fi, (3.3)

where ρi+ 1

2

= 1 in a first phase and α in a second phase, then the condition number of the

corresponding discretization matrix becomes larger as the density ratio increases as seen in
table 3.1. Though we have seen that the condition number is sensitive to the density ratio,
we have found that the condition number is not necessarily sensitive to the problem geom-
etry as seen in figure 3.2, where all illustrated geometries produce a discretization matrix
whose condition number is of the same order of magnitude.

Significant steps in reducing the solution time of the pressure projection step for these
problems have come from separate sources. The development of adaptive mesh refinement
[7, 8, 34, 72] (AMR) has allowed for a reduction in the number of required computational
grid points when used in conjuction with a method such as multigrid (MG). Unstructured
grid coarsening strategies have been implemented to allow for MG solutions of the Poisson
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N=7

Figure 3.1: Example 1D discretization for the pressure Poisson equation

Table 3.1: In multiphase flows, the condition number of the discretization matrix
for eqn. 3.2 grows with the density ratio. In this table, the condition number
is calculated for the discretization matrix of a 1D two phase flow in the domain
[0, 1] following eqn. 3.3, and with the phase interface occurring at x = 0.25. The
example flow has a density of 1 in the first phase on the interval [0, 0.25) and α in
a second phase on the interval (0.25, 1]. Values represent a discretization with 256
grid points and were calculated in MATLAB using the built in condition number
function cond().

α 1 10−1 10−2 10−3 10−4 10−5

Density Ratio 1 10 102 103 104 105

Condition # 205 1.2 x 103 1.2 x 104 1.2 x 105 1.2 x 106 1.2 x 107

ρ=1

ρ=0.001

ρ=1

ρ=0.001

ρ=0.001

ρ=1

ρ=0.001

Figure 3.2: The condition number of the discretization matrix is not as sensitive
to the problem geometry as it is to the density ratio. The corresponding condition
numbers for these figures are 6,132,300 (left), 1,861,000 (middle) and 2,548,900
(right) using a 2D version of discretization eqn. 3.3 on a 64 x 64 grid.
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equation in unstructured applications [81]. Alternatively, on uniform grids, MG has been
used to form the preconditioning matrix for the preconditioned conjugate gradient (PCG)
method. The multigrid preconditioned conjugate gradient method (MGPCG) was first
introduced by Tatebe [76] who showed that poorly conditioned problems could be solved
12 times faster using MGPCG instead of MG, and 5 times faster than incomplete LU
preconditioned CG (ILU-PCG). In our previous work [71] we developed a pressure solver
on an adaptive hierarchy of grids using a combination of MG and MGPCG. The MGPCG
“smoother” was applied a single level at a time. We have discovered though, that the
performance of the solver developed in [71] is sensitive to the number of smoothing steps of
MGPCG. In [71] a fixed number of pre-smoothing and post-smoothing MGPCG iterations
were done, but we have found that the convergence rate of the overall MG AMR method
was sensitive to the number of smoothing steps. If the number of smoothing steps increases
the cpu time increases, but if the number of smoothing steps decreases, the method may
not converge at all. In [70] we had modified the algorithm in [71] by taking a number
of MGPCG steps necessary in order to insure that the residual on a given level met a
prescribed tolerance. The approach in [70] is more robust, but less efficient. Moreover, the
performance of the method in [70,71] is sensitive to the blocking factor.

3.2.2 GPU Acceleration of the Pressure Projection Step on a Uniform

Grid

An early attempt at accelerating the pressure projection step on a uniform grid was
carried out using the PGI Fortran compiler with accelerator directives. The key to this
task is accelerating the smoothing steps used by the algorithm, e.g. Jacobi, Gauss-Siedel
Red Black (GSRB) or incomplete LU (ILU). If the method is already parallel, such as with
a Jacobi smoother or GSRB, the PGI fortran accelerator makes it easy for one to run on
a GPU with little effort since there is minimal code porting. The PGI accelerator makes
use of compiler directives on a comment line and so they remain hidden if the acclerator
option is not employed, much like OpenMP directives. Algorithm 7 demonstrates a simple
example of using this method with a Jacobi smoother for a 1D problem.

Algorithm 7 PGI FORTRAN Accelerator Code for a GPU Accelerated Jacobi Smoother

!$acc region

DO iterates = 1,maxiterates

DO i = istart,iend

x(i)=(b(i)-L(i-1)*x_old(i-1)-U(i+1)*x_old(i+1))/D(i))

END DO

DO i = istart,iend

x_old(i)=x(i)

END DO

END DO

!$acc end region

While the Jacobi smoother is easy to implement and works well on a GPU, we would
like a better performing solver like that of ILU, but that can be run in parallel on a GPU.
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Algorithm 8 Pressure projection solution by PCG on a uniform grid, solving Ax=b.

Given x0, M
Compute r0 = Ax0 − b, Solve Mz0 = r0, Set p0 = −z0

for k = 0,Maxiterates do

αk = (rk, rk)/(pk, Apk)
xk+1 = xk + αkpk

rk+1 = rk + αkApk

Enfore solvability condition by projecting rk+1 into the range of A.
∑

K rk+1
K = 0.

(Neumann BC on all walls)
Solve Mzk+1 = rk+1

βk+1 = (rk+1, zk+1)/(rk, zk)
pk+1 = −zk+1 + βk+1pk

end for

Let us examine the problem. Consider the solution of the matrix system Ax = b by the
preconditioned conjugate gradient method of algorithm 8, we want to solve Mz = r where
Q = M−1 represents our symmetric smoother. We have the following iterative scheme

zn+1 = zn + Q(r − Azn). (3.4)

In the case of the Jacobi method, we simply use M = D (the diagonal) and so Q = D−1

and we find for our iterative smoother

zn+1 = zn + D−1(r − Azn).

For the GSRB smoother, we can break the equation Mz = r into red (R) and black (B)
components to find the matrix equation

[

DR CT

C DB

] [

zR

zB

]

=

[

rR

rB

]

which can be solved by using the scheme

z∗R = D−1
R rR

zB = D−1
B (rB − Cz∗r )

zR = D−1
R (rR − CT zB)

which in turn produces the Q matrix
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Q =

[

D−1
R + D−1

R CTD−1
B CD−1

R −D−1
R CTD−1

B

−D−1
B CD−1

R D−1
B

]

The iterative solution process is then given by

r∗ = r − Azn

zn+1 = zn + Qr∗

Since the best performing smoother is ILU, we would also like a parallel version for the
GPU. Ortega [62] provides a red black incomplete Cholesky factorization (ICRB) which can
be used here in place of ILU since our matrix A is symmetric positive definite. Using the
same red-black form as the GSRB matrix representation, the factorization yields

[

DR CT

C DB

]

→

[

I 0

CD−1
R I

] [

DR 0
0 D∗

B

] [

I D−1
R CT

0 I

]

where

D∗
B = diagonal(DB − CD−1

R CT ).

It turns out that in this scenario the algorithm is exactly the same as in the GSRB case,
but with DB replaced with D∗

B . This method has provided some modest speedup results
for a 2D Dam break problem, particularly when a large number of smoother iterations are
performed without any data transfers. Table 3.2 provides some data on our experience with
the accelerator on this problem. The findings here show speedup of up to 2.4X, but the
performance is penalized by the need to move fixed data to and from the GPU because
the PGI accelerator (at the time this work was performed) has no way of allowing one to
permanently store data on the GPU in such scenarios. We have since moved on to GPU
coding in the compute unified device architecture (CUDA) C language which provides more
complete user control.

3.2.3 An Improved Projection Algorithm for Adaptive Meshes

The first algorithm we will discuss here is the currently used MG algorithm for adaptive
grids in order to demonstrate why improvement is needed. For the solution of the pressure
projection step for incompressible flows in two phases, Tatebe’s [76] MGPCG is used as a
smoother for each MG level, as described in algorithm 9. The problem with algorithm 9
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Table 3.2: Timing results for the GPU accelerated pressure projection solver on a
2D dam break problem with a large aspect ratio

Smoother Iterations Cycles CPU Time GPU Time Speedup

GSRB 4 6 2.1 s 1.5 1.40X
GSRB 20 4 4.1 s 1.7 2.41X
ICRB 4 5 2.1 s 1.7 1.24X
ICRB 20 4 4.5 s 1.9 2.37X

is that the MGPCG smoother requires multiple levels of coarsening to occur in order to
achieve optimal performance, but on an adaptive mesh these levels may not be available as
demonstrated by the 8x2 level 1 grids in figure 3.4. Here, only one coarsening step can be
achieved. The MGPCG smoother also requires one to compute on additional grids below
the desired level as seen in fig. 3.3. Also, algorithm 9 is sensitive to the number of MG-
PCG smoothing steps as too many smoothing steps may lead to unecessary increases in
computation time, and too few might lead the MG AMR algorithm diverging. To improve
this method, we replace the MG algorithm itself with a MGPCG method, and instead use
one of three possible MG preconditioning methods; a) block ILU smoother, b) Gauss-Seidel
red black (GSRB) smoother, and c) incomplete Cholesky red black (ICRB) smoother. This
results in algorithm 10.

We note that the symmetric GSRB smoother that we have employed is not typical. The
“GSRB” symmetric smoother employed by Tatebe used a red-black ordering down the MG
v-cycle, and a black-red ordering up the v-cycle. Our GSRB smoother differs by using a
red-black-black-red (RBBR) ordering at each step of the v-cycle. The ICRB smoother is
an adaptation of the parallel incomplete Cholesky factorization of Ortega [62].

Both algorithms 9 and 10 use identical restriction and prolongation operators for the
adaptive grid structure. We will define the restriction by operator R and the prolongation
by operator P . To clearly define these operators, we will use a numbering system based
on the transition from a coarse grid to an adapted fine level grid such as in figure 3.5. Let
us assume that we have N coarse grid points at a given level ℓ, xℓ

1, x
ℓ
2, · · · , xℓ

N , then we
will append the subscript with a 1,2,3 or 4 to define it as an adapted grid point at the
next finest level. For example, if we adapted the second grid point we would then have
xℓ

1, x
ℓ+1
21 , xℓ+1

22 , xℓ+1
23 , xℓ+1

24 , · · · , xℓ
N , and could continue on adding grid points in this fashion,

but here we will just use two levels. Following this numbering system, we find that the
prolongation operator can be expressed by the mapping P : xℓ

i → xℓ+1
ij for an adapted cell,

and P : xℓ
i → xℓ+1

i for a non-adapted cell. If one were to prolong the pressure on the coarse
level ℓ, the matrix equation, describing the prolongation operator, would resemble that of
eqn. 3.5.
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Algorithm 9 Original MG Algorithm for AMR

Given x0, r = b − Ax0, x = x0, δx = 0
Repeat until ||r|| < ǫ
1. Call relax(δx, r, ℓmax) on finest level
2. Let x = x + δx, r = r − A(δx)

Recursive Routine relax(sol, rhs, ℓ)
if Coarsest Level then

Solve exactly using MGPCG
else

(a) Presmoothing Step
for i = 1 to presmooth do

Smooth using MGPCG on level ℓ until ||r
ℓ
|| < ǫ

10
end for

(b) Restriction Step
(i) restrict(r) to covered level ℓ− 1 cells and exposed level ℓ− 1 cells neighboring

a covered cell.
(ii) cor = 0

(c) Relaxation on Next Coarser Level
Call relax(corcoarse, rhscoarse, ℓ − 1)

(d) Prolongate the Correction to the present level l cells covering coarse level ℓ−1 cells
and one layer of “virtual” level ℓ cells.

sol = sol + I(cor)
(e) Postsmoothing Step
for i = 1 to postsmooth do

Smooth using MGPCG on level ℓ
end for

end if
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Algorithm 10 Improved MGPCG Algorithm for AMR

Given x0, r = b − Ax0, x = x0, δx = 0
z = 0
Call relaxAMR(z, r, ℓmax)
ρ = z · r
if n = 1 then

p = z
else

β = ρ
ρold

p = z + βp
end if

α = ρ
p·(Ap)

ρold = ρ
x = x + αp
r = r − αAp

Recursive Routine relaxAMR(sol, rhs, ℓ)
if Coarsest Level then

Solve exactly using MGPCG
else

(a) Presmoothing Step
for i = 1 to presmooth do

Smooth using ILU on level ℓ
end for

(b) Restriction Step
(i) restrict(r) to covered level ℓ− 1 cells and exposed level ℓ− 1 cells neighboring

a covered cell.
(ii) cor = 0

(c) Relaxation on Next Coarser Level
Call relaxAMR(corcoarse, rhscoarse, ℓ − 1)

(d) Prolongate the Correction to the present level ℓ cells covering coarse level ℓ−1 cells
and one layer of “virtual” level ℓ cells.

sol = sol + I(cor)
(e) Postsmoothing Step
for i = 1 to postsmooth do

Smooth using ILU on level ℓ
end for

end if

51



level l+1

level l

level l−1

Figure 3.3: Adaptive mesh hierarchy in 2D. To compute the solution at level l+1,
the MG AMR algorithm (alg. 9) requires calculations at levels l and l-1.
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(3.5)

The restriction operator R can be expressed by the mapping

R : pℓ+1
i →

{ ∑4
j=1 pℓ

ij adapted cells to coarse cell

pℓ
i coarse cell to coarse cell

This restriction yields a matrix equation like that of eqn. 3.6 when restricting grid
points xi1, xi2, xi3, xi4 on a fine level grid to grid point xi on a coarse level grid.
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Irregular 8x2 Fine Meshes

Original Coarse Mesh

Figure 3.4: An MGPCG smoother can only achieve a single coarsening step on the
illustrated fine level; then one must use PCG as a bottom solver on the “irregularly
shaped” coarsest domain. On the other hand, our new MG preconditioner coarsens
only one level too, but the bottom solver is MGPCG on the whole non-“irregularly
shaped” domain. The bottom solver of our new method can coarsen two more
times.
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(3.6)

Matrix eqns. 3.5 and 3.6 show that the restriction and prolongation operators are trans-
poses of each other.

In order to show that algorithm 10 converges, it is sufficient to show that it meets
the criteria set forth by Tatebe [76] for convergence of the MGPCG method, i.e. 1) the
MG smoother is symmetric, 2) the restriction operator is the transpose of the prolongation
operator, and 3) the matrix A in the smoothing step

xk+1 = xk + M(b − Axk) real cells

xk+1 = xk fictitious cells

is symmetric. One can see that condition 2 is satisfied by viewing the matrix operators
for the restriction and prolongation, and A will be symmetric as long as first order bound-
ary conditions are applied [53, 54], so it is sufficient to show that the MG preconditioner
produced by relaxAMR is symmetric. To show that the MG preconditioner on an adaptive
grid is symmetric, we will assume that the grid on each level is a union of ‘real’ fine cells
and ‘fictitious’ coarse cells such as depicted in figure 3.5. Let M be a symmetric precon-
ditioner produced by ILU on a uniform grid, then we will define the corresponding AMR
preconditioner on a given level ℓ by the matrix M̃ , which can be defined as

M̃ =

{

M real cells
0 fictitious cells

and our equivalent smoothing step is simply xk+1 = xk + M̃(b −Axk). Now, if one were to
order the cells in such a manner that the variables corresponding to real cells were listed
first, e.g.

[x1, x2, · · · , xN ] → [xreal
1 , xreal

2 , · · · , xreal
n , xfictitious

1 , xfictitious
2 , · · · , xfictitious

n ]

then we find that
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Real Cell Fictitious Cell

Figure 3.5: Coarse and fine grid levels depicting real and fictitious cells.

M̃ =

[

M 0
0 0

]

which is symmetric and so algorithm 10 is guaranteed to converge.

3.2.4 2D Bubble

The first problem we will discuss is that of a 3D axisymmetric gas bubble (2 com-
putational dimensions) rising through a liquid phase. Figure 3.6 displays representative
discretization grids for this problem with increasing numbers of adaptive levels. Timing
data for this problem is given in table 3.3 and a table giving the speedup factor of the new
MGPCG AMR algorithm over the original MG AMR algorithm is provided in table 3.4. On
this problem, the new MGPCG AMR algorithm is typically 2-3X faster than the original
MG AMR algorithm, and performs up to 4X faster than the original MG AMR algorithm
when using a blocking factor of four along with five adaptive levels. The only case when
the new solver underperforms is with a blocking factor of eight and only one adaptive level.

3.2.5 3D Bubble

The second test problem is also a rising gas bubble through a liquid phase, but expanded
to three spatial dimensions. Figure 3.7 shows the grid for this problem with two adaptive
levels and a blocking factor of four. Timing data for this problem is given in table 3.5 and a
table giving the speedup factor of the new MGPCG AMR algorithm over the original MG
AMR algorithm is provided in table 3.6. For this test problem, the new MGPCG AMR
algorithm shows improvement over the MG AMR algorithm when more than one adaptive
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a. b.

c. d.

Figure 3.6: AMR grids for a rising 3D axisymmetric bubble. The representative
grids all use a blocking factor of two and contain a) one adaptive level, b) two
adaptive levels, c) three adaptive levels, and d) four adaptive levels.
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Table 3.3: Timing results for a single pressure solve for the new MGPCG AMR
algorithm along with the old MG AMR algorithm and the PCG algorithm for the
3D axisymmetric test bubble. The new MGPCG algorithm is faster than the old
MG AMR algorithm in nearly every scenario. Grid sizes for a fixed blocking factor
and number of adaptive levels are identical for each method.

Blocking Factor 2 4 8
Adaptive Levels 1 3 5 1 3 5 1 3 5

ILU Smoother
PCG 0.659 5.424 63.49 0.563 3.359 35.54 0.365 2.875 26.78
MG 0.270 2.181 13.93 0.252 1.349 10.05 0.098 0.751 6.060
MGPCG 0.142 0.636 4.109 0.127 0.439 2.493 0.096 0.382 2.156

ICRB Smoother
PCG 0.653 5.366 69.49 0.567 3.561 39.02 0.377 3.012 25.53
MG 0.281 2.177 16.54 0.278 1.435 10.96 0.112 0.885 6.634
MGPCG 0.157 0.655 4.511 0.152 0.498 2.732 0.123 0.415 2.402

GSRB Smoother
PCG 0.641 5.706 65.99 0.567 4.037 37.72 0.364 3.014 29.26
MG 0.284 2.165 13.91 0.266 1.367 10.38 0.108 0.845 5.957
MGPCG 0.153 0.678 4.426 0.145 0.464 2.743 0.118 0.408 2.176

Table 3.4: Speedup factor for the new MGPCG AMR method over the original MG
AMR method on the 3D axisymmetric test bubble problem. The new algorithm
outperforms the old by an increasing margin as both the blocking factor and the
number of adaptive levels are increased. It can be seen that the benefits of the new
method are not realized in the case of large blocking factors and a single adaptive
level.

Blocking Factor 2 4 8
Adaptive Levels 1 3 5 1 3 5 1 3 5

ILU 1.91X 3.43X 3.39X 1.99X 3.07X 4.03X 1.01X 1.97X 2.81X
ICRB 1.79X 3.32X 3.67X 1.83X 2.88X 4.01X 0.91X 2.13X 2.76X
GSRB 1.86X 3.19X 3.14X 1.84X 2.95X 3.78X 0.92X 2.07X 2.74X
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Figure 3.7: Mesh for a 3D rising bubble with 2 adaptive levels and a blocking factor of 4.

level is used and achieves a speedup of 2X in the case of three adaptive levels and a blocking
factor of two.

3.2.6 3D Whale

The third problem tested here is simulated flow past a 3D whale body. Figure 3.8 shows
a grid with two adaptive levels for this problem, along with the whale body. This test
problem shows the best overall speedup of the new method and is 2-4X faster than the old
method, even when only solving with one adaptive level.

3.3 FUN3D

The software accelerated in this section is the NASA FUN3D code, which is described
in references [5] and [4]. Additionally, the acceleration found here was first described in
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Table 3.5: Timing results for a single pressure solve for the new MGPCG AMR
algorithm along with the old MG AMR algorithm and the PCG algorithm for a
3D test bubble.

Blocking Factor 2 4 8
Adaptive Levels 1 2 3 1 2 3 1 2 3

ILU Smoother
PCG 3.839 18.45 71.11 3.326 14.24 49.79 4.154 22.22 69.70
MG 2.156 9.432 40.46 1.704 6.140 24.02 2.146 7.410 21.68
MGPCG 1.884 6.295 19.05 1.747 5.220 14.63 1.999 6.007 17.53

ICRB Smoother
PCG 4.158 19.67 75.61 3.682 15.28 56.82 4.770 27.19 84.94
MG 2.227 9.916 41.31 1.910 6.958 30.35 2.490 10.10 28.47
MGPCG 2.354 7.083 19.36 2.263 5.950 16.96 2.686 7.559 20.33

GSRB Smoother
PCG 4.023 19.99 78.66 3.735 15.43 58.33 4.801 26.19 86.51
MG 2.145 9.708 41.06 1.860 7.086 31.98 2.485 10.10 29.68
MGPCG 2.331 7.149 20.20 2.241 6.191 17.67 2.571 8.001 20.19

Table 3.6: Speedup factor for the new MGPCG AMR method over the original MG
AMR method on the 3D test problem of simulating a gas bubble rising through a
liquid phase.

Blocking Factor 2 4 8
Adaptive Levels 1 2 3 1 2 3 1 2 3

ILU 1.14X 1.50X 2.12X 0.98X 1.18X 1.64X 1.07X 1.23X 1.24X
ICRB 0.95X 1.40X 2.13X 0.84X 1.17X 1.79X 0.93X 1.34X 1.40X
GSRB 0.92X 1.36X 2.03X 0.83X 1.14X 1.81X 0.97X 1.26X 1.47X
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Figure 3.8: Mesh for a 3D whale with 2 adaptive levels.
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Table 3.7: Timing results for a single pressure solve for the new MGPCG AMR
algorithm along with the old MG AMR algorithm and the PCG algorithm for flow
past a 3D whale.

Blocking Factor 2 4 8
Adaptive Levels 1 2 3 1 2 3 1 2 3

ILU Smoother
PCG 32.33 126.5 468.1 33.69 122.0 528.6 47.32 198.3 759.9
MG 10.52 41.69 145.6 9.874 35.71 133.4 13.91 57.37 202.2
MGPCG 5.445 15.06 43.66 5.796 14.84 48.74 7.113 21.28 70.07

ICRB Smoother
PCG 40.15 171.9 636.1 42.80 160.6 705.6 68.93 269.2 1056
MG 14.93 64.01 226.1 14.61 61.08 226.1 24.02 102.5 371.9
MGPCG 7.606 19.93 56.83 8.794 19.45 62.45 10.49 28.93 94.08

GSRB Smoother
PCG 41.07 179.2 648.8 43.11 167.0 710.2 70.00 276.3 1078
MG 15.99 67.29 230.4 15.42 63.24 234.9 26.03 106.8 395.9
MGPCG 8.063 22.38 57.47 8.451 21.61 65.76 10.39 31.77 94.70

Table 3.8: Speedup factor for the new MGPCG AMR method over the original
MG AMR method on the 3D test problem of flow past a 3D whale.

Blocking Factor 2 4 8
Adaptive Levels 1 2 3 1 2 3 1 2 3

ILU 1.93X 2.77X 3.33X 1.70X 2.41X 2.74X 1.96X 2.70X 2.89X
ICRB 1.96X 3.21X 3.98X 1.66X 3.14X 3.62X 2.29X 3.54X 3.95X
GSRB 1.98X 3.01X 4.01X 1.82X 2.93X 3.57X 2.51X 3.36X 4.18X
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[21]. FUN3D is a large production level code consisting of several hundred Fortran 95
modules and approximately 850,000 lines of code. Under development since the late 1980’s,
FUN3D possesses a large array of aerodynamic simulation and optimization capabilities for
both steady and time dependent problems across the speed range. The software has been
distributed to hundreds of individuals in academia, industry and other goverment agencies.
This work focuses on the porting of a single routine (point implicit colored GS solver) which
consumes a substantial portion of the computation.

3.3.1 Mathematical Formulation

The portion of the FUN3D code pertinent to this work is the compressible Reynolds-
averaged Navier-Stokes solver. The spatial discretization utilizes an unstructured finite
volume scheme with a tetrahedral mesh. The dependent variables are stored at the vertices.
Inviscid fluxes at control volume interfaces are computed using the upwind scheme of Roe
[67], and viscous fluxes are formed using an approach equivalent to a finite-element Galerkin
procedure [5]. For turbulent flows, the eddy viscosity is modeled using the one-equation
approach of Spalart and Allmaras [69]. An approximate solution of the linear system of
equations formed within each time step is obtained through several iterations of a multicolor
point-iterative scheme. The turbulence model is integrated all the way to the wall without
the use of wall functions and is solved separately from the mean flow equations at each time
step with a time integration and linear system solution scheme identical to that employed
for the mean flow equations. In the current implementation, the grid points are numbered
using a reverse Cuthill- McKee technique [16] to improve cache performance during flux and
jacobian gather/scatter operations. However, the multicolor point-iterative scheme forbids
physically adjacent unknowns from residing within the same color group. Therefore, the
relaxation scheme is inherently cache unfriendly in its basic form. Since the majority of the
floating point operations required to advance the solution take place in the relaxation phase,
a mapping is introduced which orders the data in the coefficient matrix by its assigned color
as the individual contributions to the jacobian elements are determined. In this manner,
memory is accessed in ideal sequential order during the relaxation as would be achieved in
a more simplistic scheme such as point-Jacobi, while the substantial algorithmic benefits
(improved stability and convergence) of the multicolor scheme are retained.

3.3.2 Parallelization and Scaling

The FUN3D code has demonstrated parallel scalability to tens of thousands of proces-
sor cores. This is achieved primarily through efficiient domain decomposition and message
passing communication. Pre- and post-processing operations are also performed in parallel
using distributed memory, avoiding the need for a single image of the mesh or solution at
any time and ultimately yielding a highly efficient end- to-end simulation paradigm. Typi-
cal scaling performance for the solver on a range of mesh sizes is shown in Figure 3.9, with
meshes in the millions of nodes. A mesh typically contains six times as many tetrahedral
cells than the number of nodes, and so the 105 million node mesh equates to 630 million
tetrahedral cells. The majority of these results have been generated on a Silicon Graph-
ics ICE platform consisting of dual-socket, quad-core Intel Xeon “Harpertown” processors.
The data marked “Westmere” has been generated using dual- socket, hex-core “Westmere”
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Figure 3.9: Parallel scaling results for FUN3D. Problems are given by node size,
with M equating to millions of nodes. There are approximately 6 times as many
tetrahedral cells as there are nodes for a given problem size. Ares is a rocket geom-
etry and DPW grids represent aircraft configurations from AIAA Drag Prediction
Workshops. The linear dashed line represents ideal scaling.

processors. The implementation scales well across the range of processing cores shown.

One factor in maintaining scalable performance within FUN3D is the load balancing of
the computation and communication costs over the processors, which inherently involves the
efficient partitioning of the underlying unstructured grid. The mesh partitioning software
Metis and ParMetis [47, 48] is used by many CFD codes. Metis’ partitioning objectives
attempt to evenly distribute the number of nodes (work) to each processor, while minimizing
the number of adjacent elements assigned to different processors (communication). In graph
theory, these objectives translate to minimizing the edge-cuts and minimizing the total
communication volume.

3.3.3 GPU Acceleration

To improve the performance of the FUN3D code, a minimally invasive accelerator model
has been implemented in which code portions are ported to the GPU. This allows for an
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increase in speed without altering the proven methods of the underlying solvers. The
FUN3D code portion targeted for acceleration was the point implicit subroutine used for
groups of 5x5 matrix equations which represent the linearized form of the discrete mean
flow equations. These correspond to the density, velocity and pressure variables ρ, u, v,
w, and p. This routine can account for as much as 70% of the program’s total CPU
time (such as when solving the Euler equations), but is typically closer to 30% (RANS),
depending on the required number of sweeps by the colored Gauss-Seidel (GS) solver for the
particular problem. Cache size can play a significant role on this routine and on unstructured
codes in general. For this reason along with the need for concurrent kernel execution
capabilities, only the latest generation Nvidia Fermi architecture hardware is targeted, since
these possesses true L1 and L2 caches which were previously unavailable. On the CPU side,
each core performs the colored GS solve sequentially, so a natural mapping to the GPU is
created with single threads computing the solutions to the individual 5x5 block solves of
a color in parallel. A CUDA C subroutine call has been inserted into the original Fortran
point_solve_5 (PS5) subroutine to carry out the code porting. The computation of the
right hand side (RHS) solve between colors has effectively been moved to the GPU when
sufficient available memory and double precision capabilities are present. A general outline
of PS5 is given in Algorithm 1, noting single precision (SP), double precision (DP) and
mixed precision (MP) segments. For the test problems, 10,000’s to 100,000’s of threads are
launched, each computing an entire 5x5 block solve corresponding to an individual equation
for the particular color. CUDA C was chosen because it allows for the most explicit user
control over the previously mentioned Fermi architecture GPUs that we are employing as
accelerators. CUDA C also provides portability as it is is widely used and the compiler is
freely available. Given the code, one could (with a little effort) extend this capability to
other accelerators with OpenCL, as the language extensions are similar. In general, any
accelerator used must have capabilities for both concurrent kernel execution and double
precision arithmetic, though there are exceptions that will be discussed further.

Algorithm 11 PS5 Subroutine Outline

for color = 1 to max colors do

b(:) = residual(:)
// Begin RHS solve
for n = start to end do

Step 1. Compute off diagonal contributions
for j = istart to iend do

bi = bi − Σi6=jAi,j ∗ xicol (SP)
end for

Step 2. Compute 5x5 forward solve (DP)
Step 3. Compute 5x5 back solve (DP)
Step 4. Compute sum contribution, update RHS (MP)
Step 5. Accumulate Sum Contributions (GPU Only)

end for

// End color, do MPI communication
Call MPI transfer

end for
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3.3.4 GPU Distributed Sharing Model

The GPU code has been developed with four different CUDA subroutines; the first
dedicated for a single core-single GPU scenario, and the remaining three for multi-core
scenarios which require MPI communication transfers at the end of each color sweep. The
MPI versions are based on what we call a GPU distributed sharing model. We will define
this as an accelerator model where work is efficiently distributed across multiple processors
which share a single GPU. This should be done in such a manner that, if necessary, the
CPU cores perform some amount of the computational work which would otherwise be done
by the GPU in order to ensure that kernel execution remains optimal. This is an impor-
tant concept since large kernels can place large demands on available GPU resources when
called simultaneously, particularly when they use many registers and large chunks of shared
and constant memory. In fact, if too many resources are required, kernels from multiple
threads could be scheduled to execute sequentially, causing a substantial or complete loss
of performance gains. Sharing kernel work with multiple CPU threads should also reduce
core idle time, leading to more resource efficient execution. One constraint we have found
inherent to this model is a reduction in available GPU memory. As data is distributed to
multiple CPU cores, there are more individual structures that are padded when put into
GPU memory, leading to a reduction in the available global memory for each additional
thread. In all of our test cases on a GTX 480 card, each additional thread sharing the GPU
reduces the available global memory predictably within the 63-68 MB range, independent
of problem size. This yields an average loss of approximately 66.7 MB of available memory
per shared CPU thread, for exactly the same amount of data being stored.

We consider GPU sharing to be an important feature of new and future hybrid CFD
codes. We recognize that on a large shared hybrid cluster one could simply use one core
per GPU, allowing the remaining cores of a node to be allocated to other tasks. However,
with a scalable CFD code it is optimal to utilize as many cores as possible, since this should
lead to the best overall performance. Consider running a CFD code that easily scales to
thousands of cores on a 256 GPU cluster. Clearly, one would produce better times with
1024 cores and 256 GPUs than with only 256 cores and 256 GPUs, even if the speedup over
the CPU cores alone was not as dramatic.

We will now present the four new CUDA subroutines introduced into the FUN3D code,
and note that only solution data transfers to and from the GPU are required within the
subroutine itself. All other necessary data is transferred externally in optimal locations.
Also note that these subroutines only replace a single sweep of the colored GS solver, as
MPI communications are typically necessary after every sweep.

3.3.5 CUDA Subroutines

• gs_gpu : The first subroutine is for a straightforward 1 core - 1 GPU setup where the
entire GS solve is done in CUDA. The kernel for this scenario computes the entire RHS
solve, and is called repeatedly through the color sweeps without any data transfers. In
this case, a single GPU thread maps to a single control volume, computing its own 5x5
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block solve (steps one through four in Algorithm 1). After a thread synchronization,
the kernel keeps five threads to accumulate the sum contributions for the five variables
(step 5 of Algorithm 1) before moving on to the next color. This scenario does not
require MPI communication, and hence provides the biggest performance gains, but is
limited to a single processor. We will refer to this routine as gs_gpu, which does not
require concurrent kernel execution. The kernel for this routine allocates 21 registers
per thread, and 136 bytes of constant memory per thread block at compile time,
as found by the --ptxas-options=-v compiler option. It requires one CPU to GPU
solution transfer at the beginning of the call, and one GPU to CPU transfer at the end,
but none between colors. We note that our unstructured code is unable to effectively
use the 48 KB shared memory space, and opt instead to swap this larger section with
the 16 KB L1 cache space using the cudaFuncSetCacheConfig function. Using the
larger L1 cache space provides a noticeable 6% performance increase over the smaller
version for this routine.

• gs_mpi0 : This case is identical to that above in terms of the GPU kernel, however,
it assumes that an MPI communication is required at the end of each color. Here,
the CUDA routine must copy the solution back from the GPU and return it to the
Fortran subroutine to perform the transfer, providing additional overhead. We will
refer to this routine as gs_mpi0, which uses the same kernel as gs_gpu and hence
maintains identical GPU resource allocation properties. This routine, along with the
other MPI CUDA routines, require two additional data transfers (one CPU to GPU
and one GPU to CPU) for each color.

• gs_mpi1 : This subroutine is the first to consider the effects of GPU sharing, by
attempting to reduce the kernel size and distribute a small portion of the workload
to the CPU. When developing kernels, one must try to reduce CPU-GPU memory
copies at all costs, even if that means performing less than ideal tasks on the GPU
side. The kernel of the first two subroutines performs a final accumulation of sum
contributions with a mere 5 threads, and so this portion of code does not benefit
from mass thread parallelism, but does reduce transfer overhead by keeping sum
contributions on the GPU. As more threads share the GPU, this potential overhead
can be reduced since multiple CPU cores can copy their respective sum contributions
back in parallel. Once there, the more powerful CPU cores should be able to perform
the accumulations faster. This concept is implemented in subroutine gs_mpi1. Moving
this small amount of work to the CPU reduces the constant memory by a mere 8 bytes
and does not reduce the kernel register count.

• gs_mpi2 : The final subroutine was designed to execute with many threads sharing a
single GPU. It shares a substantial amount of computation with the CPU, and also
eliminates all double precision calculations from the GPU side. This is accomplished
by cutting the kernel short and computing the double precision forward and backward
solves along with the sum and solution updates on the CPU, only computing step 1
of Algorithm 1 on the GPU. In the process, the need to transfer the diagonal of the
LHS matrix A is eliminated, leading to a reduction in data transfer costs and more
importantly, freeing up valuable global memory space. The kernel for this subrou-
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Table 3.9: FUN3D Grid partitioning over 8 processor cores, showing that node
distributions are fairly well balanced.

Cores 1 2 3 4 5 6 7 8

1 339206
2 168161 171045
4 85339 84626 84861 84380
8 42824 40608 42828 42622 42555 42525 42726 42518

tine reduces the register count by 1, while maintaining the same constant memory
requirements as the kernel of gs_mpi1.

3.4 Test Problems

The GPU accelerated FUN3D code has been tested with a number of problem sizes
ranging from approximately 16,000 to 1.1 million grid points (96,000 - 6.6 million elements),
but will describe in more detail two particular scenarios.

3.4.1 Test Problem 1

The first test problem is a generic wing-body geometry used in grid generation training
at NASA Langley [3]. It is a pure tetrahedral grid, with 37,834 triangular boundary faces,
339,206 Nodes and 1,995,247 Cells. The node partitioning is given in Table 3.9, the surface
grid is given in Figure 3.10, along with the GPU computed pressure solution for p

p∞
at

convergence. This setup calls 20 PS5 sweeps per iteration, accounting for approximately
70% of the FUN3D total run time. This problem is inviscid, has a Mach number of 0.3 and
an angle of attack of 2.0 degrees.

3.4.2 Test Problem 2

The second problem is a DLR-F6 wing-body configuration used in the second interna-
tional AIAA Drag Prediction Workshop (DPW-II) [51]. The versions used here include the
coarse grid containing 1,121,301 nodes and 6,558,758 tetrahedral cells, and also a reduced
grid with approximately 650,000 nodes and 3.9 million tetrahedral cells. In this case, PS5
corresponds to approximately 30% of the total FUN3D wall clock time. The smaller grid
along with the corresponding GPU computed pressure solution for p

p∞
are given in Fig-

ure 3.11, corresponding to a turbulent solution with a Mach number of 0.76, an angle of
attack of 0.0 degrees and a Reynolds number of 1 million.

3.5 FUN3D Results and Discussion

Two machines were used for timing studies: a dual socket Dell workstation with Intel
Xeon 5080 CPUs (2 cores @ 3.73 GHz, 2 MB L2) and a single Nvidia GTX 480 GPU. The
second machine is a small Beowulf GPU cluster with a head node and two Fermi equipped
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Figure 3.10: Test problem 1 grid (left) and GPU computed pressure solution for
p

p∞
(right). Generic wing-body geometry, contains 339,206 nodes and 1,995,247

tetrahedral cells. Pressure solution obtained at convergence of the FUN3D solver
(132 iterations). Inviscid, Mach Number = 0.3, Angle of Attack = 2.0 degrees.
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Figure 3.11: Test problem 2 grid (left) and GPU computed pressure solution for
p

p∞
(right). DLR-F6 wing-body configuration, contains approximately 650,000

nodes and 3.9 million tetrahedral cells. Turbulent, Mach Number = 0.76, Angle
of Attack = 0.0 degrees, Reynolds Number = 1, 000, 000.
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Table 3.10: Single core performance results for routine gs gpu on test problem 1
using the GTX 480 WS.

GTX 480 WS - gs_gpu CPU Cores CPU Time CPU/GPU Time Speedup

FUN3D Code 1 1732.8 s 794.1 s 2.182X
PS5 Subroutine 1 0.455 s 0.082 s 5.549X

compute nodes connected by a gigabit switch. Each compute node possesses an AMD
Athlon II X4 620 processor (4 cores @ 2.6 GHz, 2 MB L2) and a single Nvidia GTX 470
card. We note that we have recently gained access to a GPU research cluster at Nvidia
corporation and have begun further testing on a much larger scale, with acces to 96 CPU
cores and 16 Tesla Fermi GPUs. We do not include any conclussions from this further
study here as it is not yet complete, but note that some initial timing data is included in
Appendix A, along with more detailed data using the machines mentioned here.

3.5.1 Single Core Performance

Performance results for a single sweep of the PS5 solver on the GTX 480 workstation
for a range of grid point sizes are given in Figure 3.12. The best performing subroutine,
gs_gpu, achieves a speedup of approximately 5.5X regardless of problem size. Performance
for the gs_mpi0 routine which utilizes the same CUDA kernel is cut in half as a result
of CPU-GPU data transfers necessary for MPI communication between colors. We see
that version gs_mpi2 comes closest to the performance of gs_gpu, and believe that this
is due to the removal of double precision calculations, as the GeForce series cards have
been purposely de-tuned for these. We speculate that gs_mpi1 would achieve the best
MPI performance in the presence of higher end Tesla series cards with full double precision
capabilities. Single core speedups on the Beowulf cluster are not as good, with a best case
of 4.75X. This is due to the fact that the CPU times are slightly better on a single AMD
core, and that the GTX 470 is slightly less capable than the 480 model. For the single
core scenario on both machines, the overall FUN3D code is accelerated by a factor of 2X
or more for test problem 1, which spends about 70% of its total CPU time in the PS5
subroutine. We note that our CUDA subroutines execute the fastest with only 8-16 threads
per block, well below the Nvidia minimum recommendation of 64. This is likely due to
the additional cache resources available to each thread. While we are primarily concerned
with large scale parallel applications, these single core results provide valuable insight. We
have learned here that even in the absence of MPI transfers, speedups are limited and well
below the par set by so many other GPU acclerated applications. We do note, however,
that larger cache sizes could help narrow the gap between this unstructured code and those
that benefit from ordered memory access patterns. We also find that in a single core setting
our GPU accelerated implicit solver has exceeded the 2.5-3X speedup achieved by that of
the OVERFLOW code [46], perhaps a more fitting standard for comparison.
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Table 3.11: Single core performance results for routine gs gpu on test problem 1
using the GTX 470 BC.

GTX 470 BC - gs_gpu CPU Cores CPU Time CPU/GPU Time Speedup

FUN3D Code 1 1728.9 s 860.5 s 2.001X
PS5 Subroutine 1 0.437 s 0.092 s 4.750X
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Figure 3.12: CPU and GPU performances for a single PS5 sweep with varying test
case sizes. Tests were run on a single core of an Intel Xeon 5080 CPU mated with
a single NVIDIA GTX 480 GPU.
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Table 3.12: Timing results for routine gs mpi2 on test problem 1 using the GTX 480 WS.

GTX 480 WS - gs_mpi2 CPU Cores CPU Time CPU/GPU Time Speedup

FUN3D Code 1 1732.8 s 845.7 s 2.049X
PS5 Subroutine 1 0.455 s 0.104 s 4.375X

FUN3D Code 2 850.6 s 543.5 s 1.565X
PS5 Subroutine 2 0.216 s 0.087 s 2.483X

FUN3D Code 4 496.0 s 438.3 s 1.132X
PS5 Subroutine 4 0.125 s 0.092 s 1.359X

Table 3.13: Timing results for routine gsmpi2 on test problem 1 using 1 node of
the GTX 470 BC.

GTX 470 BC - gs_mpi2 CPU Cores CPU Time CPU/GPU Time Speedup

FUN3D Code 1 1728.9 s 908.1 s 1.904X
PS5 Subroutine 1 0.437 s 0.113 s 3.867X

FUN3D Code 2 963.9 s 651.4 s 1.480X
PS5 Subroutine 2 0.240 s 0.105 s 2.286X

FUN3D Code 4 674.3 s 548.3 s 1.230X
PS5 Subroutine 4 0.172 s 0.109 s 1.578X

3.5.2 Multiple Core Performance

The Beowulf GPU cluster allows us to study scenarios up to 8 cores, 2 GPUs. Fig-
ures 3.13 and 3.14 show strong and weak scaling results. Strong scaling within a single
node shows the limitations of a GPU distributed sharing model, namely, that if developed
properly, the GPU code should execute at approximately the same speed regardless of the
number of cores per GPU. Due to this factor, local CPU scaling will ultimately provide the
limit on the number of cores that can share a single GPU. We see here from the strong
scaling figure that a core limit is not reached for this machine, but it would likely be four
with more cores present. Weak scaling results are comparable to the original code on two
nodes, but testing on a larger cluster is needed to provide better insight. Viewing the weak
scaling results, we find that in a grid point for grid point manner the PS5 subroutine runs
about 40% faster when the nodes employ GPUs. This may not seem significant considering
the high expectations of GPU accelerated codes, but one must consider that the code is
unstructured, there are 20 or more CPU-GPU solution transfers per sweep (one to the GPU
and one back to the CPU for each GS color), and this is achieved with four processor cores
sharing a single low cost (about $350) gaming card.

3.5.3 Discussion

While the results obtained in this work are limited to a 2X overall code speedup, they do
indicate future potential for the use of large GPU clusters with production level unstructured
CFD codes. Considering that GPU chips are advancing at a faster pace than CPU versions,
it may very well be the case that this code performs substantially better on the next
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Table 3.14: Timing results for routine gsmpi2 on test problem 1 using 2 nodes of
the GTX 470 BC.

GTX 470 BC - gs_mpi2 CPU Cores CPU Time CPU/GPU Time Speedup

FUN3D Code 2 881.1 s 478.8 s 1.840X
PS5 Subroutine 2 0.221 s 0.061 s 3.623X

FUN3D Code 4 498.8 s 348.4 s 1.432X
PS5 Subroutine 4 0.121 s 0.059 s 2.051X

FUN3D Code 8 366.0 s 315.8 s 1.159X
PS5 Subroutine 8 0.088 s 0.063 s 1.397X
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Figure 3.13: Strong scaling within a single node for a single sweep of the PS5
subroutine using CUDA version gs mpi2. Tests were run on 2 nodes of a Beowulf
GPU cluster, each running an AMD Athlon II X4 quad core processor and Nvidia
GTX 470 GPU. Strong scaling results use a 340,000 grid point test problem on
one node.
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Figure 3.14: Weak scaling across two compute nodes for a single sweep of the PS5
subroutine using CUDA version gs mpi2. Tests were run on 2 nodes of a Beowulf
GPU cluster, each running an AMD Athlon II X4 quad core processor and Nvidia
GTX 470 GPU. Weak scaling results use a 340,000 grid point test problem on one
node, and a 650,000 grid point problem distributed across 2 nodes. Weak scaling
times are per 100,000 grid points.
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Table 3.15: GPU architecture evolution from G80, which approximately coincided
with the release of Intel’s quad core CPUs, to Fermi which coincided with the
release of Intel’s six core processors. GPU advancements over the last few years
have noticeably outpaced those of CPUs. Representative GPUs are: G80-GeForce
8800 GT, GT200-Tesla C1060, Fermi-Tesla C2050. 1shared memory, 2 texture
memory, 3Configurable L1/shared memory.

Architecture Year Cores L1 Cache L2 Cache Memory Access Speed

G80 2006 112 16 KB 1 128 KB 2 57.6 GB/s GDDR3
GT200 2008 240 24 KB 1 256 KB 2 102 GB/s GDDR3
Fermi 2010 448 48/16 KB 3 768 KB 144 GB/s GDDR5

generation architecture with larger cache sizes and faster memory access speeds. Table 3.15
provides a look at the rapid advancements occurring in GPU technology, which is beginning
to noticeably outpace those of CPUs. Should these trends continue with more available
cache and faster memory access speeds, hybrid clusters will become much more amenable
to the acceleration of unstructured codes. However, if GPUs are to play an integral role in
large scale parallel computations invovling high level codes, data transfer technologies will
also need to improve to reduce the performance penalty incurred through CPU-GPU data
transfers, as these will provide the biggest bottleneck.
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CHAPTER 4

FUTURE RESEARCH

In this chapter we bring together the work on PDE constrained optimization and on CFD
code acceleration and look forward to the the development of a simulation based design
code for microfluidic applications. While significant contributions to this dissertation come
from the study of adjoint methods and the acceleration of the FUN3D code, we note that
gradient based aerodynamic design via adjoint methods is well studied and that this is
one of FUN3D’s current capabilities. The acceleration of the FUN3D point implicit solver
should directly provide accelerated adjoint based design capabilities (adjoint solvers essen-
tially require two flow solves per iteration), but we will not pursue this topic any further
here. We also note that we are currently working in the early stages of a collaboration
with Nvidia Corporation and the Computational AeroSciences Branch at NASA Langley
Research Center to further develop FUN3D on GPU based clusters. Since the future direc-
tion of this work is uncertain at this time, we can not include any specific discussion here.
In addition, we are also developing an improved version of the GPU accelerated CLSVOF
projection smoothers which will use CUDA instead of the PGI Fortran Accelerator. We will
now move on to discuss the development of a code for the numerical design of microfluidic
T-junctions used in lab-on-a-chip devices.

4.1 Towards the Computational Design of Microfluidic

Structures

An SBD application we are interested in is the design of midrofluidic T-junctions for
lab-on-a-chip designs. This work is a planned collaboration with Micheal Roper’s (FSU
Chemistry) microfluids lab who will provide experimental data for verification of our nu-
merical models. The main idea of the so called ‘Lab on a Chip’ setup is to allow for various
high throughput assay applications in which the reactions of precisely measured droplets
are observed in microfluidic channels. Recent research and applications of such devices are
described in the works [27,68,75], which also provide a solid foundation of information relat-
ing to the aspect of droplet break up in T-junction geometries. In order to create droplets
of a particular size, microfluidic T-junctions are employed; see the left side of Figure 4.1.
We can see from the figure that the junction consists of two channels, a horizontal channel
which contains a continuous or ’carrier’ fluid, and another channel perpendicularto to the
first channel which contains the discontinuous fluid which forms the droplets. In [27], a good
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discussion of droplet and bubble formation and breakup in both liquid-liquid and gas liquid
systems is given along with associated findings on the relationships between various input
factors such as fluid pressures and viscosities for particular setups. It is in this work that we
find two important conditions in the ’squeezing’ mechanism which leads to droplet rupture,
first that the width of the main channel should be greater than its height, and second that
the width of the inlet channel be at least half the main channel’s width. While this work
provides some guidance for the design of T-junctions under certain conditions, the models
found through experimentation break down once parameters are changed. We feel that this
is a problem which can be best tackled by simulation based design utilizing state of the art
algorithms for both simulating the fluid flow through these microfluidic channels, and for
optimizing the design of the T-junction itself. From Figure 4.1 (left side) one can see that
the basic design of a T-junction can be described using the precise height and width of the
individual channels. We propose to use varying control points within the T-junction which
can be shifted to produce simulations resulting in droplets of varying sizes. The precision
in the size of these drops is important as they travel through the trap array since they may
not be properly caught if they are not the correct size.. Other important factors which
contribute to the control of the droplets include the surfactants used in the process and
the flow rates of the individual phases (e.g. oil and water), variables which can easily be
incorporated into a non-intrusive derivative free optimization strategy.

Numerical simulations of the T-junction geometries using data from Roper’s lab setup
are given in figure 4.2. We propose to use our CLSVOF code along with a MGMDS
algorithm to carry out the design optimization of the channel dimension, first using only a
small number of control points to define the geometry. As the project progresses we intend
to include more design variables including surfactant properties. The end result will be a
state-of-the-art microfluidic design code capable of producing optimal channel designs for
two phase flows at the micro level.
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Figure 4.1: Microfluidic T-junction experiment from Roper’s laboratory (FSU
Chemistry) showing a T-junction geometry with a droplet traveling via a carrier
fluid.

Figure 4.2: Numerical simulations of two fluids in a microfluidic T-junction using
the CLSVOF code and experimental setups from Roper’s Lab.
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CHAPTER 5

CONCLUSION

In this dissertation we have provided valuable knowledge to the fields of PDE constrained
optimization, multigrid methods, incompressible multiphase flow simulations on adaptive
meshes and GPU computing methods for CFD codes. Furthermore, we have provided a
framework with which to move forward towards the the development of a sophisticated
design code for microfluidic structures. To this end we have provided the following specific
advances to applied and computational mathematics:

• We have demonstrated that the gradient free multidirectional search method (MDS)
is a viable alternative to the discrete adjoint method for problems in PDE constrained
optimization when one only requires a local method, and when gradient computation
is not feasible. We estimate that in the case that there are as many processor cores
available for computation as the number of design variables plus one (each processor
core maps in parallel to a PDE solve) that the MDS method will perform on par with
the discrete adjoint method run on a single processor core. In addition, we have found
that the MDS method is not as sensitive to non-linear model features as is the discrete
adjoint method for the 1D data assimilation problems tested.

• We have shown that multigrid schemes can significantly accelerate the convergence
rate of the multidirectional search method when employed in the solution of PDE
constrained optimization methods. Using an FMG cycle, we have demonstrated a
5.5X speedup on a linear 1D data assimilation problem. We have also shown for
this problem that the use of weighted averaging of the fine grid solution through the
multigrid cycles can produce a more accurate final solution, but at the cost of faster
solution times.

• We have described the GPU acceleration of the smoothing steps required by a pre-
conditioned conjugate gradient solver used in the solution of the pressure projection
step of a coupled level set and volume of fluid code (CLSVOF). This GPU accelerated
solver utilizes PGI Fortran compiler with accelerator directives. We have shown that
for a large aspect ratio 2D problem, the new accelerated solver is up to 2.4X faster
than the CPU version. We have concluded that a new solver should be developed
in the compute unified device architecture (CUDA) language which allows for more
direct user control over data allocation, and which will allow us to permanently store
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data on the GPU. This should substantially reduce communication overhead between
the GPU and CPU and lead to a much faster code.

• We have described an improved pressure projection solver for incombressible multi-
phase flow simulations on adaptive grids which requires substantially fewer grid point
calculations than current methods. The new MGPCG AMR method is up to 4X faster
than the previous MG AMR algorithm for the problems tested.

• We have ported the point_solve_5 subroutine of the unstructured NASA FUN3D
code for computation on GPU based clusters, achieving a speedup of up to 5.5X for
the subroutine and up to 2X for the overall code. The new subroutine utilizes a
novel GPU sharing model that allows multiple processor cores to run on a single GPU
simultaneously, and provides for increased scalability. We have shown that this model
scales in parallel up to 8 cores - 2 GPUs, and that a 40% performance increase for the
accelerated subroutine has been achieved with 4 cores sharing a single GPU.
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APPENDIX A

FUN3D TIMING DATA

This appendix contains timing data from the FUN3D acceleration described in chapter 3.
Three machines were used for this study. The first is a Dell workstation with dual socket
Intel Xeon dual core 5080 processors and a single Nvidia GTX 480 GPU, we refer to this
machine as GTX 480 WS. The second machine is a personal Beowulf cluster with two com-
pute nodes each running a single AMD Athlon II quad core processor and a single Nvidia
GTX 470 GPU which we will label GTX 470 BC. Finally, we have been aloted 8 nodes on
a research cluster at Nvidia corporation, each with dual socket Xeon 6 core processors and
2 Nvidia Tesla M2050 GPUs. We refer to this machine as TESLA RC. The details of these
machines are provided below, along with details of the test problems used.

GTX 480 WS: Intel Xeon 5080 Workstation, NVIDIA GTX 480

• CPU: 2 x 2 core @ 3.73 GHz, 2 MB L2

• GPU: 1 x 480 CUDA core @ 1.4 GHz, 1.6 GB Global Memory

GTX 470 BC: AMD Athlon II Beowulf Cluster, NVIDIA GTX 470

• CPU: 2 x 4 core @ 2.6 GHz, 2 MB L2

• GPU: 2 x 448 CUDA core @ 1.25 GHz, 1.26 GB Global Memory

TESLA RC: Nvidia Tesla M2050 Research Cluster

• CPU: 16 x 6 core @ 2.93 GHz, 12 MB L2

• GPU: 16 x 448 Cuda cores @ 1.15 GHz, 3 GB Global Memory
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Table A.1: Test problems used in this study. * approximate.

Problem Configuration Type Cells Nodes

Test Problem 1 Simple Wing/Body Inviscid 339,206 1,995,247
Test Problem 2 DLR-F6 Aircraft Turbulent 650,000* 3,900,000*
Test Problem 3 Wing Leading-Edge Turbulent 900,000* 5,500,000*
Test Problem 4 DLR-F6 Aircraft - Turbulent 1,121,301 6,558,758

Table A.2: Timing results for routine gs gpu on test problem 1 using the TESLA RC.

TESLA RC - gs_gpu CPU Cores CPU Time CPU/GPU Time Speedup

PS5 Subroutine 1 0.17497 s 0.096 s 1.822X

Table A.3: Timing results for routine gs mpi0 on test problem 1 using the GTX 480 WS.

GTX 480 WS - gs_mpi0 CPU Cores CPU Time CPU/GPU Time Speedup

FUN3D Code 1 1732.8 s 1026.5 s 1.688X
PS5 Subroutine 1 0.455 s 0.170 s 2.676X

FUN3D Code 2 850.6 s 744.5 s 1.143X
PS5 Subroutine 2 0.216 s 0.164 s 1.317X

FUN3D Code 4 496.0 s 648.1 s 0.758X
PS5 Subroutine 4 0.125 s 0.167 s 0.727X

Table A.4: Timing results for routine gs mpi0 on test problem 1 using 1 node of
the GTX 470 BC.

GTX 470 BC - gs_mpi0 CPU Cores CPU Time CPU/GPU Time Speedup

FUN3D Code 1 1728.9 s 1137.1 s 1.568X
PS5 Subroutine 1 0.437 s 0.197 s 2.218X

FUN3D Code 2 963.9 s 882.15 s 1.093X
PS5 Subroutine 2 0.240 s 0.193 s 1.244X

FUN3D Code 4 674.3 s 786.5 s 0.857X
PS5 Subroutine 4 0.172 s 0.197 s 0.873X

Table A.5: Timing results for routine gs mpi0 on test problem 1 using 2 nodes of
the GTX 470 BC.

GTX 470 BC - gs_mpi0 CPU Cores CPU Time CPU/GPU Time Speedup

FUN3D Code 2 888.1 s 596.2 s 1.490X
PS5 Subroutine 2 0.221 s 0.104 s 2.125X

FUN3D Code 4 498.8 s 482.9 s 1.033X
PS5 Subroutine 4 0.121 s 0.104 s 1.163X

FUN3D Code 8 366.0 s 441.6 s 0.829X
PS5 Subroutine 8 0.088 s 0.109 s 0.807X
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Table A.6: Timing results for routine gs mpi1 on test problem 1 using the GTX 480 WS.

GTX 480 WS - gs_mpi1 CPU Cores CPU Time CPU/GPU Time Speedup

FUN3D Code 1 1732.8 s 912.0 s 1.900X
PS5 Subroutine 1 0.455 s 0.128 s 3.555X

FUN3D Code 2 850.6 s 626.4 s 1.358X
PS5 Subroutine 2 0.216 s 0.118 s 1.831X

FUN3D Code 4 496.0 s 528.1 s 0.939X
PS5 Subroutine 4 0.125 s 0.123 s 1.016X

Table A.7: Timing results for routine gs mpi1 on test problem 1 using 1 node of
the GTX 470 BC.

GTX 470 BC - gs_mpi1 CPU Cores CPU Time CPU/GPU Time Speedup

FUN3D Code 1 1728.9 s 1011.7 s 1.709X
PS5 Subroutine 1 0.437 s 0.149 s 2.933X

FUN3D Code 2 963.9 s 754.7 s 1.277X
PS5 Subroutine 2 0.240 s 0.142 s 1.690X

FUN3D Code 4 674.3 s 669.0 s 1.008X
PS5 Subroutine 4 0.172 s 0.148 s 1.162X

Table A.8: Timing results for routine gs mpi1 on test problem 1 using 2 nodes of
the GTX 470 BC.

GTX 470 BC - gs_mpi1 CPU Cores CPU Time CPU/GPU Time Speedup

FUN3D Code 2 881.1 s 522.2 s 1.687X
PS5 Subroutine 2 0.221 s 0.080 s 2.763X

FUN3D Code 4 498.8 s 405.2 s 1.231X
PS5 Subroutine 4 0.121 s 0.079 s 1.532X

FUN3D Code 8 366.0 s 369.3 s 0.991X
PS5 Subroutine 8 0.088 s 0.082 s 1.073X

Table A.9: Timing results for routine gs mpi2 on test problem 1 using 1 node of
the TESLA RC.

GTX 470 BC - gs_mpi1 CPU Cores CPU Time CPU/GPU Time Speedup

PS5 Subroutine 1 0.175 s 0.072 s 2.431X

PS5 Subroutine 2 0.091 s 0.055 s 1.655X

Table A.10: Timing results for routine gs gpu on test problem 2 using the GTX 480 WS.

GTX 480 WS gs_mpi2 CPU Cores CPU Time CPU/GPU Time Speedup

PS5 Subroutine 1 0.851 s 0.155 s 5.490X
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Table A.11: Timing results for routine gs gpu on test problem 2 using the GTX 470 BC.

GTX 470 BC - gs_mpi2 CPU Cores CPU Time CPU/GPU Time Speedup

PS5 Subroutine 1 0.822 s 0.174 s 4.724X

Table A.12: Timing results for routine gs mpi2 on test problem 2 using the GTX
480 WS.

GTX 480 WS - gs_mpi2 CPU Cores CPU Time CPU/GPU Time Speedup

PS5 Subroutine 1 0.851 s 0.189 s 4.503X

PS5 Subroutine 2 0.402 s 0.152 s 2.645X

PS5 Subroutine 4 0.237 s 0.155 s 1.529X

Table A.13: Timing results for routine gs mpi2 on test problem 2 using two nodes
of the GTX 470 BC machine.

GTX 470 BC - gs_mpi2 CPU Cores CPU Time CPU/GPU Time Speedup

PS5 Subroutine 1 0.822 s 0.215 s 3.823X

PS5 Subroutine 2 0.449 s 0.198 s 2.268X

PS5 Subroutine 4 0.332 s 0.197 s 1.685X

Table A.14: Timing results for routine gs mpi2 on test problem 2 using two nodes
of the GTX 470 BC machine.

GTX 470 BC - gs_mpi2 CPU Cores CPU Time CPU/GPU Time Speedup

PS5 Subroutine 2 0.407 s 0.120 s 3.392X

PS5 Subroutine 4 0.223 s 0.112 s 1.991X

PS5 Subroutine 8 0.165 s 0.115 s 1.435X

Table A.15: Timing results for routine gs mpi2 on test problem 3 using the GTX
480 WS machine.

GTX 480 WS - gs_mpi2 CPU Cores CPU Time CPU/GPU Time Speedup

PS5 Subroutine 1 1.140 s 0.257 s 4.436X

PS5 Subroutine 2 0.558 s 0.213 s 2.620X

Table A.16: Timing results for routine gs mpi2 on test problem 3 using two nodes
of the GTX 470 BC machine. GPU Memory is insufficient for sharing among 4
threads, the problem must be split across two GPUs.

GTX 470 BC - gs_mpi2 CPU Cores CPU Time CPU/GPU Time Speedup

PS5 Subroutine 2 0.564 s 0.213 s 2.648X

PS5 Subroutine 4 0.316 s 0.179 s 1.765X

PS5 Subroutine 8 0.230 s 0.168 s 1.369X

83



Table A.17: Timing results for routine gs mpi2 on test problem 4 using two nodes
of the GTX 470 BC machine.

GTX 470 BC - gs_mpi2 CPU Cores CPU Time CPU/GPU Time Speedup

PS5 Subroutine 4 0.411 s 0.195 s 2.108X

PS5 Subroutine 8 0.299 s 0.189 s 1.582X

Table A.18: Timing results for routine gs mpi2 on test problem 4 using eight nodes
of the TESLA RC machine.

TESLA RC - gs_mpi2 CPU Cores CPU Time CPU/GPU Time Speedup

PS5 Subroutine 8 0.080 s 0.035 s 2.286X
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[36] J. P. Hämäläinen, R. E. Mäkinen, and P. Tarvainen. Evolutionary shape optimization
in CFD with industrial applications. In European Congress on Computational Methods
in Science and Engineering, 2000.
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